{"title":"Hole cleaning and wet-granular rheology of rock cutting beds: Impact of drilling fluid composition","authors":"Camilo Pedrosa , Arild Saasen , Jan David Ytrehus","doi":"10.1016/j.petrol.2022.111267","DOIUrl":null,"url":null,"abstract":"<div><p>Cuttings-beds formation is an issue that must be considered during all wellbore drilling operations. This problem increases at highly deviated or horizontal wells, where cuttings removal efficiency becomes one of the most critical elements for the whole drilling operations. Removal of drilled cuttings is done through circulating the drilling fluid and then separate out the cuttings at the surface. When the wellbore is inclined or horizontal, the cuttings tend to settle and form cuttings-beds. The consolidation strength of these cuttings-beds is normally unknown. Traditional studies on cuttings-bed removal usually focus on the final result: effective cuttings-bed removal. The scope of this study is to analyze the wetted cuttings-bed particle bonding strength and the stress required to break the formed bed, by means of granular rheology methodology. In other words, the strength required to erode a formed cuttings-bed is addressed independently. Wet-granular rheology techniques, complemented by Mohr-Coulomb envelop analysis has shown to be an effective approach to describe the cohesive strength of consolidated cuttings-bed and flowability of the particles within the beds. We have analyzed simulated cuttings-beds’ shear strength and flowability using quartz particles saturated with water, water-based drilling fluid and oil-based drilling fluid. The results showed that the interstitial fluid and its composition significantly impact the shear strength of the bed, conveying higher cohesion for water-based drilling fluid in comparison to oil-based drilling fluids.</p></div>","PeriodicalId":16717,"journal":{"name":"Journal of Petroleum Science and Engineering","volume":"220 ","pages":"Article 111267"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920410522011196","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
Cuttings-beds formation is an issue that must be considered during all wellbore drilling operations. This problem increases at highly deviated or horizontal wells, where cuttings removal efficiency becomes one of the most critical elements for the whole drilling operations. Removal of drilled cuttings is done through circulating the drilling fluid and then separate out the cuttings at the surface. When the wellbore is inclined or horizontal, the cuttings tend to settle and form cuttings-beds. The consolidation strength of these cuttings-beds is normally unknown. Traditional studies on cuttings-bed removal usually focus on the final result: effective cuttings-bed removal. The scope of this study is to analyze the wetted cuttings-bed particle bonding strength and the stress required to break the formed bed, by means of granular rheology methodology. In other words, the strength required to erode a formed cuttings-bed is addressed independently. Wet-granular rheology techniques, complemented by Mohr-Coulomb envelop analysis has shown to be an effective approach to describe the cohesive strength of consolidated cuttings-bed and flowability of the particles within the beds. We have analyzed simulated cuttings-beds’ shear strength and flowability using quartz particles saturated with water, water-based drilling fluid and oil-based drilling fluid. The results showed that the interstitial fluid and its composition significantly impact the shear strength of the bed, conveying higher cohesion for water-based drilling fluid in comparison to oil-based drilling fluids.
期刊介绍:
The objective of the Journal of Petroleum Science and Engineering is to bridge the gap between the engineering, the geology and the science of petroleum and natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of petroleum engineering, natural gas engineering and petroleum (natural gas) geology. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership.
The Journal of Petroleum Science and Engineering covers the fields of petroleum (and natural gas) exploration, production and flow in its broadest possible sense. Topics include: origin and accumulation of petroleum and natural gas; petroleum geochemistry; reservoir engineering; reservoir simulation; rock mechanics; petrophysics; pore-level phenomena; well logging, testing and evaluation; mathematical modelling; enhanced oil and gas recovery; petroleum geology; compaction/diagenesis; petroleum economics; drilling and drilling fluids; thermodynamics and phase behavior; fluid mechanics; multi-phase flow in porous media; production engineering; formation evaluation; exploration methods; CO2 Sequestration in geological formations/sub-surface; management and development of unconventional resources such as heavy oil and bitumen, tight oil and liquid rich shales.