Single-layer thin-film transistor analysis and design

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of the Society for Information Display Pub Date : 2023-08-24 DOI:10.1002/jsid.1257
John F. Wager
{"title":"Single-layer thin-film transistor analysis and design","authors":"John F. Wager","doi":"10.1002/jsid.1257","DOIUrl":null,"url":null,"abstract":"<p>A set of direct current (DC) analytical equations is formulated for the analysis and design of a single-layer thin-film transistor (TFT). For a specified TFT structure, drain current is calculated as a function of drain and gate voltage (taking the source as ground) according to the Enz, Krummenacher, Vittoz (EKV) compact model. One model parameter function is required to implement this EKV-based equation, that is, drift mobility as a function of gate voltage. Drift mobility is evaluated as a consequence of accumulation layer electrostatics assessment of the TFT structure specified. In order to implement the model, three semiconductor properties (low-frequency (static) relative dielectric constant, free electron concentration, and maximum (no trapping) mobility), two structure properties (insulator capacitance density and TFT width-to-length ratio), and one physical operating parameter (temperature) must be specified. Optimal TFT mobility performance is achieved when the thickness of the semiconductor channel layer is constrained to be less than 2.22 times the channel layer Debye length such that “short-base” TFT operation obtains. Additionally, higher mobility TFT performance is obtained by selecting a channel layer with a small electron effective mass, reducing channel layer trap density, reducing channel layer thickness, reducing the free electron concentration, and/or increasing gate capacitance density.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsid.1257","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1257","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A set of direct current (DC) analytical equations is formulated for the analysis and design of a single-layer thin-film transistor (TFT). For a specified TFT structure, drain current is calculated as a function of drain and gate voltage (taking the source as ground) according to the Enz, Krummenacher, Vittoz (EKV) compact model. One model parameter function is required to implement this EKV-based equation, that is, drift mobility as a function of gate voltage. Drift mobility is evaluated as a consequence of accumulation layer electrostatics assessment of the TFT structure specified. In order to implement the model, three semiconductor properties (low-frequency (static) relative dielectric constant, free electron concentration, and maximum (no trapping) mobility), two structure properties (insulator capacitance density and TFT width-to-length ratio), and one physical operating parameter (temperature) must be specified. Optimal TFT mobility performance is achieved when the thickness of the semiconductor channel layer is constrained to be less than 2.22 times the channel layer Debye length such that “short-base” TFT operation obtains. Additionally, higher mobility TFT performance is obtained by selecting a channel layer with a small electron effective mass, reducing channel layer trap density, reducing channel layer thickness, reducing the free electron concentration, and/or increasing gate capacitance density.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层薄膜晶体管的分析与设计
本文建立了一套用于单层薄膜晶体管(TFT)分析和设计的直流(DC)解析方程。对于特定的TFT结构,漏极电流根据Enz, Krummenacher, Vittoz (EKV)紧凑模型计算为漏极和栅极电压的函数(以源为地)。需要一个模型参数函数来实现这个基于EKV的方程,即漂移迁移率作为栅极电压的函数。漂移迁移率的评估作为累积层静电评估的TFT结构规定的结果。为了实现该模型,必须指定三个半导体特性(低频(静态)相对介电常数、自由电子浓度和最大(无捕获)迁移率)、两个结构特性(绝缘体电容密度和TFT宽长比)和一个物理操作参数(温度)。当半导体沟道层的厚度被限制在小于沟道层德拜长度的2.22倍时,可以实现最佳的TFT迁移性能,从而获得“短基”TFT操作。此外,通过选择电子有效质量小的沟道层、降低沟道层陷阱密度、减小沟道层厚度、降低自由电子浓度和/或增加栅极电容密度,可以获得更高的迁移率TFT性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Society for Information Display
Journal of the Society for Information Display 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.70%
发文量
98
审稿时长
3 months
期刊介绍: The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.
期刊最新文献
Issue Information Issue Information Issue Information Issue Information Visual perception of distance in 3D-augmented reality head-up displays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1