Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles

IF 1.1 Q3 ECONOMICS Econometrics Pub Date : 2023-02-14 DOI:10.3390/econometrics11010006
Hui-Ching Chuang, Jau‐er Chen
{"title":"Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles","authors":"Hui-Ching Chuang, Jau‐er Chen","doi":"10.3390/econometrics11010006","DOIUrl":null,"url":null,"abstract":"In this study, we explore the effect of industry distress on recovery rates by using the unconditional quantile regression (UQR). The UQR provides better interpretative and thus policy-relevant information on the predictive effect of the target variable than the conditional quantile regression. To deal with a broad set of macroeconomic and industry variables, we use the lasso-based double selection to estimate the predictive effects of industry distress and select relevant variables. Our sample consists of 5334 debt and loan instruments in Moody’s Default and Recovery Database from 1990 to 2017. The results show that industry distress decreases recovery rates from 15.80% to 2.94% for the 15th to 55th percentile range and slightly increases the recovery rates in the lower and the upper tails. The UQR provide quantitative measurements to the loss given default during a downturn that the Basel Capital Accord requires.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics11010006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore the effect of industry distress on recovery rates by using the unconditional quantile regression (UQR). The UQR provides better interpretative and thus policy-relevant information on the predictive effect of the target variable than the conditional quantile regression. To deal with a broad set of macroeconomic and industry variables, we use the lasso-based double selection to estimate the predictive effects of industry distress and select relevant variables. Our sample consists of 5334 debt and loan instruments in Moody’s Default and Recovery Database from 1990 to 2017. The results show that industry distress decreases recovery rates from 15.80% to 2.94% for the 15th to 55th percentile range and slightly increases the recovery rates in the lower and the upper tails. The UQR provide quantitative measurements to the loss given default during a downturn that the Basel Capital Accord requires.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索行业困境对贷款回收的影响:量化的双机器学习方法
在本研究中,我们使用无条件分位数回归(UQR)来探讨行业困境对回收率的影响。与条件分位数回归相比,UQR在目标变量的预测效果方面提供了更好的解释性信息,从而提供了与政策相关的信息。为了处理一组广泛的宏观经济和行业变量,我们使用基于套索的双重选择来估计行业困境的预测效果,并选择相关变量。我们的样本包括1990年至2017年穆迪违约和恢复数据库中的5334种债务和贷款工具。结果表明,行业困境使第15至55百分位区间的回收率从15.80%降至2.94%,而下尾部和上尾部的回收率略有上升。UQR为巴塞尔资本协议要求的低迷时期违约损失提供了定量衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
期刊最新文献
Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality Signs of Fluctuations in Energy Prices and Energy Stock-Market Volatility in Brazil and in the US Transient and Persistent Technical Efficiencies in Rice Farming: A Generalized True Random-Effects Model Approach Is It Sufficient to Select the Optimal Class Number Based Only on Information Criteria in Fixed- and Random-Parameter Latent Class Discrete Choice Modeling Approaches? Instrumental Variable Method for Regularized Estimation in Generalized Linear Measurement Error Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1