Comparative study of the effects of high- versus low-dose zinc oxide in the diet with or without probiotic supplementation on weaning pigs' growth performance, nutrient utilization, fecal microbes, noxious gas discharges, and fecal score

IF 1.2 4区 农林科学 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE Canadian Journal of Animal Science Pub Date : 2022-10-21 DOI:10.1139/cjas-2022-0080
Sarbani Biswas, M. Kim, J. Park, Y. Kim, I. Kim
{"title":"Comparative study of the effects of high- versus low-dose zinc oxide in the diet with or without probiotic supplementation on weaning pigs' growth performance, nutrient utilization, fecal microbes, noxious gas discharges, and fecal score","authors":"Sarbani Biswas, M. Kim, J. Park, Y. Kim, I. Kim","doi":"10.1139/cjas-2022-0080","DOIUrl":null,"url":null,"abstract":"Abstract This study was conducted to determine the effects of high- versus low-dose (3000 vs. 300) zinc oxide (ZnO) in combination with or without a probiotic complex (0.1%) on weaned piglet production efficiency, nutrient absorption, fecal bacterial counts, noxious gas emissions, and fecal score. A 42-day experiment included 180 crossbred weaned piglets [Duroc × (Yorkshire × Landrace); 28 days old; 6.61 ± 1.29 kg] and four dietary treatments. An HZ (high ZnO) diet increased body weight at week 6, average daily gain at week 3, week 6, and overall period, and gain-to-feed ratio (G:F) at week 3 compared with an LZ (low ZnO) diet. G:F tended to increase with the LZP (LZ with probiotic) diet compared with the HZP (HZ with probiotic) diet at week 1. Escherichia coli count decreased by HZ diet compared with the LZ diet. In addition, E. coli count decreased and Lactobacillus count increased with the HZP diet compared with the LZP diet. There was no effect of treatment on nutrient digestibility, noxious gas emission, and fecal score. No interactive effect was seen between ZnO and probiotic. Therefore, high-dose ZnO inclusion improved growth performance and probiotic addition improved fecal microbiota, but no synergistic effect was found from ZnO and probiotic complex interaction.","PeriodicalId":9512,"journal":{"name":"Canadian Journal of Animal Science","volume":"103 1","pages":"33 - 43"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Animal Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjas-2022-0080","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study was conducted to determine the effects of high- versus low-dose (3000 vs. 300) zinc oxide (ZnO) in combination with or without a probiotic complex (0.1%) on weaned piglet production efficiency, nutrient absorption, fecal bacterial counts, noxious gas emissions, and fecal score. A 42-day experiment included 180 crossbred weaned piglets [Duroc × (Yorkshire × Landrace); 28 days old; 6.61 ± 1.29 kg] and four dietary treatments. An HZ (high ZnO) diet increased body weight at week 6, average daily gain at week 3, week 6, and overall period, and gain-to-feed ratio (G:F) at week 3 compared with an LZ (low ZnO) diet. G:F tended to increase with the LZP (LZ with probiotic) diet compared with the HZP (HZ with probiotic) diet at week 1. Escherichia coli count decreased by HZ diet compared with the LZ diet. In addition, E. coli count decreased and Lactobacillus count increased with the HZP diet compared with the LZP diet. There was no effect of treatment on nutrient digestibility, noxious gas emission, and fecal score. No interactive effect was seen between ZnO and probiotic. Therefore, high-dose ZnO inclusion improved growth performance and probiotic addition improved fecal microbiota, but no synergistic effect was found from ZnO and probiotic complex interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加或不添加益生菌的饮食中高剂量和低剂量氧化锌对断奶猪生长性能、营养利用、粪便微生物、有毒气体排放和粪便评分影响的比较研究
摘要本研究旨在确定高剂量与低剂量(3000与300)氧化锌(ZnO)与益生菌复合物(0.1%)的组合对断奶仔猪生产效率、营养吸收、粪便细菌计数、有害气体排放和粪便评分的影响。一项为期42天的试验包括180头杂交断奶仔猪[Duroc×(Yorkshire×Landrace);28天大;6.61±1.29kg]和四种饮食处理。与LZ(低ZnO)饮食相比,HZ(高ZnO)饮食增加了第6周的体重、第3周、第6周和整个时期的平均日增重以及第3周的增料比(G:F)。G: 在第1周,与HZP(含益生菌的HZ)饮食相比,LZP(含益生素的LZ)饮食的F倾向于增加。和LZ日粮相比,HZ日粮降低了大肠杆菌计数。此外,和LZP日粮相比,HZP日粮的大肠杆菌数量减少,乳酸杆菌数量增加。处理对养分消化率、有害气体排放和粪便评分没有影响。ZnO和益生菌之间没有发现相互作用。因此,高剂量ZnO包合物改善了生长性能,添加益生菌改善了粪便微生物群,但ZnO和益生菌复合物的相互作用没有发现协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Animal Science
Canadian Journal of Animal Science 农林科学-奶制品与动物科学
CiteScore
2.30
自引率
0.00%
发文量
51
审稿时长
6 months
期刊介绍: Published since 1957, this quarterly journal contains new research on all aspects of animal agriculture and animal products, including breeding and genetics; cellular and molecular biology; growth and development; meat science; modelling animal systems; physiology and endocrinology; ruminant nutrition; non-ruminant nutrition; and welfare, behaviour, and management. It also publishes reviews, letters to the editor, abstracts of technical papers presented at the annual meeting of the Canadian Society of Animal Science, and occasionally conference proceedings.
期刊最新文献
Effect of dietary nitrogen content and ammonium phosphate inclusion on lysine requirement for nitrogen retention in growing pigs An Assessment of the Environmental Sustainability of Beef Production in Canada Effect of dietary almond hull on growth performance, nutrient digestibility, fecal microbial, fecal score, and noxious gas emission in growing pigs. Impact of dietary zinc and copper levels on ileal and total apparent nutrient digestibility in growing pigs Prediction of ileal digestible phosphorus in broiler chicken diets supplemented with exogenous phytase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1