L. Ravanel, G. Guillet, S. Kaushik, S. Preunkert, E. Malet, F. Magnin, E. Trouvé, M. Montagnat, Yajing Yan, P. Deline
{"title":"Ice aprons on steep high-alpine slopes: insights from the Mont-Blanc massif, Western Alps","authors":"L. Ravanel, G. Guillet, S. Kaushik, S. Preunkert, E. Malet, F. Magnin, E. Trouvé, M. Montagnat, Yajing Yan, P. Deline","doi":"10.1017/jog.2023.15","DOIUrl":null,"url":null,"abstract":"\n Ice aprons are defined as very small ice bodies covering steep rock slopes. They have only been the subject of increased scientific interest for a few years, despite the fact that they are a condition for mountaineering and obvious elements in the high-alpine landscapes. However, very little is known about their distribution, evolution and physical characteristics. In this paper, we review the existing knowledge on ice aprons, which have almost exclusively been investigated in the Mont-Blanc massif, Western Alps. We supplement this review with novel results from recent surveys of ice aprons. We used a wide array of methodologies, from remote sensing (multi-source imagery) to in situ (stakes and thermal monitoring) and laboratory (radiocarbon dating and texture analysis) glaciological investigations. In the Mont-Blanc massif, ice aprons occupy 4.2 km2 within the alpine permafrost zone. Temperature measured at the ice–rock interface is indeed largely negative. Thinness of ice aprons coupled with the cold context implies a quasi-stationary shear regime without basal Sliding. Only ice at the surface can possibly melt in warm periods. After a shrinking period from the end of the Little Ice Age to the mid-to-late-1960s, ice aprons experienced a short period of expansion, followed by an accelerated shrinkage since the beginning of the 21st century. This shrinkage now favours rockfall triggering and poses a serious threat to a glaciological heritage since ice aprons host several-thousand-year-old ice. Finally, we synthesize this information to assess the existing definition of ice aprons, and propose some future research directions.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.15","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Ice aprons are defined as very small ice bodies covering steep rock slopes. They have only been the subject of increased scientific interest for a few years, despite the fact that they are a condition for mountaineering and obvious elements in the high-alpine landscapes. However, very little is known about their distribution, evolution and physical characteristics. In this paper, we review the existing knowledge on ice aprons, which have almost exclusively been investigated in the Mont-Blanc massif, Western Alps. We supplement this review with novel results from recent surveys of ice aprons. We used a wide array of methodologies, from remote sensing (multi-source imagery) to in situ (stakes and thermal monitoring) and laboratory (radiocarbon dating and texture analysis) glaciological investigations. In the Mont-Blanc massif, ice aprons occupy 4.2 km2 within the alpine permafrost zone. Temperature measured at the ice–rock interface is indeed largely negative. Thinness of ice aprons coupled with the cold context implies a quasi-stationary shear regime without basal Sliding. Only ice at the surface can possibly melt in warm periods. After a shrinking period from the end of the Little Ice Age to the mid-to-late-1960s, ice aprons experienced a short period of expansion, followed by an accelerated shrinkage since the beginning of the 21st century. This shrinkage now favours rockfall triggering and poses a serious threat to a glaciological heritage since ice aprons host several-thousand-year-old ice. Finally, we synthesize this information to assess the existing definition of ice aprons, and propose some future research directions.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.