{"title":"Predicting soil carbon in granitic soils using Fourier-transform mid-infrared (FT-MIR) spectroscopy: the value of database disaggregation","authors":"Kelebohile Rose Seboko, J. V. van Tol, E. Kotzé","doi":"10.1080/02571862.2023.2180098","DOIUrl":null,"url":null,"abstract":"Soil carbon (C) is an important component in quality assessments and efficient models are required to estimate C rapidly. Accurate C assessments are valuable in monitoring land-use changes. Fourier-transform mid-infrared (FT-MIR) spectroscopy has proved to be a powerful tool for assessing C. The potential of FT-MIR spectroscopy to estimate C was evaluated using the following techniques: (1) three algorithms [partial least squares (PLS)], principal component regression (PCR), and classical least squares (CLS); and (2) disaggregating the dataset into subgroups based on soil depth and texture. The C contents of samples collected in the Johannesburg Granite Dome were determined by dry combustion for comparison. The soils ranged considerably in C (0.123–2.650%), clay (2.80–41.20%), and silt content (8.56–23.75%). Using standard normal variant (SNV), Savitzky-Golay smoothing and PLS, the best-performing model was the horizons subgroup which provided values of root mean square error for prediction (RMSEP) between 0.079 and 0.095%, root mean square error for calibration (RMSEC) = 0.041 − 0.092, r 2 pre = 0.6174–0.8459, r 2 cal = 0.6599–0.9778, residual prediction variation (RPD) = 2.404–2.753, and ratio of performance to interquartile range (RPIQ) = 2.667–3.454. The pronounced accuracy of FT-MIR spectroscopy coupled with PLS, pre-processing techniques, and textural subgroups confirms the potential of infrared spectroscopy as an efficient tool for estimating C content. Future studies should investigate the combined effects of FT-MIR spectroscopy and subgroups grouped according to soil types and land-uses when predicting C.","PeriodicalId":21920,"journal":{"name":"South African Journal of Plant and Soil","volume":"40 1","pages":"23 - 33"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Plant and Soil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02571862.2023.2180098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil carbon (C) is an important component in quality assessments and efficient models are required to estimate C rapidly. Accurate C assessments are valuable in monitoring land-use changes. Fourier-transform mid-infrared (FT-MIR) spectroscopy has proved to be a powerful tool for assessing C. The potential of FT-MIR spectroscopy to estimate C was evaluated using the following techniques: (1) three algorithms [partial least squares (PLS)], principal component regression (PCR), and classical least squares (CLS); and (2) disaggregating the dataset into subgroups based on soil depth and texture. The C contents of samples collected in the Johannesburg Granite Dome were determined by dry combustion for comparison. The soils ranged considerably in C (0.123–2.650%), clay (2.80–41.20%), and silt content (8.56–23.75%). Using standard normal variant (SNV), Savitzky-Golay smoothing and PLS, the best-performing model was the horizons subgroup which provided values of root mean square error for prediction (RMSEP) between 0.079 and 0.095%, root mean square error for calibration (RMSEC) = 0.041 − 0.092, r 2 pre = 0.6174–0.8459, r 2 cal = 0.6599–0.9778, residual prediction variation (RPD) = 2.404–2.753, and ratio of performance to interquartile range (RPIQ) = 2.667–3.454. The pronounced accuracy of FT-MIR spectroscopy coupled with PLS, pre-processing techniques, and textural subgroups confirms the potential of infrared spectroscopy as an efficient tool for estimating C content. Future studies should investigate the combined effects of FT-MIR spectroscopy and subgroups grouped according to soil types and land-uses when predicting C.
期刊介绍:
The Journal has a proud history of publishing quality papers in the fields of applied plant and soil sciences and has, since its inception, recorded a vast body of scientific information with particular reference to South Africa.