Secure Storage and Data Sharing Scheme Using Private Blockchain-Based HDFS Data Storage for Cloud Computing

G. Shrivastava, Sachin Patel
{"title":"Secure Storage and Data Sharing Scheme Using Private Blockchain-Based HDFS Data Storage for Cloud Computing","authors":"G. Shrivastava, Sachin Patel","doi":"10.22247/ijcna/2023/218509","DOIUrl":null,"url":null,"abstract":"– The storage of a vast quantity of data in the cloud, which is then delivered via the internet, enables Cloud Computing to make doing business easier by providing smooth access to the data and eliminating device compatibility limits. Data that is in transit, on the other hand, may be intercepted by a man-in-the-middle attack, a known plain text assault, a selected cypher text attack, a related key attack, or a pollution attack. Uploading data to a single cloud might, as a result, increase the likelihood that the secret data would be damaged. A distributed file system extensively used in huge data analysis for frameworks such as Hadoop is known as the Hadoop Distributed File System, more commonly referred to as HDFS. Because with HDFS, it is possible to manage enormous volumes of data while using standard hardware that is not very costly. On the other hand, HDFS has several security flaws that might be used for malicious purposes. This highlights how critical it is to implement stringent security measures to make it easier for users to share files inside Hadoop and to have a reliable system in place to validate the shared files' validity claims. The major focus of this article is to discuss our efforts to improve the security of HDFS by using an approach made possible by blockchain technology (hereafter referred to as BlockHDFS). To be more precise, the proposed BlockHDFS uses the Hyperledger Fabric platform, which was developed for business applications, to extract the most value possible from the data inside files to provide reliable data protection and traceability in HDFS. In the results section, the performance of AES is superior to that of other encryption algorithms because it ranges from 1.2 milliseconds to 1.9 milliseconds. In contrast, DES ranges from 1.3 milliseconds to 3.1 milliseconds, three milliseconds to 3.6 millimetres, RC2 milliseconds to 3.9 milliseconds, and RSA milliseconds to 1.4 milliseconds, with data sizes ranging from 910 kilos.","PeriodicalId":36485,"journal":{"name":"International Journal of Computer Networks and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22247/ijcna/2023/218509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

– The storage of a vast quantity of data in the cloud, which is then delivered via the internet, enables Cloud Computing to make doing business easier by providing smooth access to the data and eliminating device compatibility limits. Data that is in transit, on the other hand, may be intercepted by a man-in-the-middle attack, a known plain text assault, a selected cypher text attack, a related key attack, or a pollution attack. Uploading data to a single cloud might, as a result, increase the likelihood that the secret data would be damaged. A distributed file system extensively used in huge data analysis for frameworks such as Hadoop is known as the Hadoop Distributed File System, more commonly referred to as HDFS. Because with HDFS, it is possible to manage enormous volumes of data while using standard hardware that is not very costly. On the other hand, HDFS has several security flaws that might be used for malicious purposes. This highlights how critical it is to implement stringent security measures to make it easier for users to share files inside Hadoop and to have a reliable system in place to validate the shared files' validity claims. The major focus of this article is to discuss our efforts to improve the security of HDFS by using an approach made possible by blockchain technology (hereafter referred to as BlockHDFS). To be more precise, the proposed BlockHDFS uses the Hyperledger Fabric platform, which was developed for business applications, to extract the most value possible from the data inside files to provide reliable data protection and traceability in HDFS. In the results section, the performance of AES is superior to that of other encryption algorithms because it ranges from 1.2 milliseconds to 1.9 milliseconds. In contrast, DES ranges from 1.3 milliseconds to 3.1 milliseconds, three milliseconds to 3.6 millimetres, RC2 milliseconds to 3.9 milliseconds, and RSA milliseconds to 1.4 milliseconds, with data sizes ranging from 910 kilos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于私有区块链的HDFS数据存储云计算安全存储和数据共享方案
–将大量数据存储在云中,然后通过互联网传输,使云计算能够通过提供对数据的平滑访问和消除设备兼容性限制,使业务更轻松。另一方面,传输中的数据可能会被中间人攻击、已知的纯文本攻击、选定的密码文本攻击、相关的密钥攻击或污染攻击拦截。因此,将数据上传到单个云可能会增加机密数据被损坏的可能性。一种广泛用于Hadoop等框架的海量数据分析的分布式文件系统被称为Hadoop分布式文件系统,通常被称为HDFS。因为使用HDFS,可以在使用成本不高的标准硬件的同时管理大量数据。另一方面,HDFS存在一些可能被用于恶意目的的安全缺陷。这突出表明,实施严格的安全措施,让用户更容易在Hadoop中共享文件,并有一个可靠的系统来验证共享文件的有效性声明是多么重要。本文的主要重点是讨论我们通过使用区块链技术(以下简称BlockHDFS)实现的方法来提高HDFS的安全性。更准确地说,所提出的BlockHDFS使用为商业应用程序开发的Hyperledger Fabric平台,从文件中的数据中提取最大可能的价值,以在HDFS中提供可靠的数据保护和可追溯性。在结果部分,AES的性能优于其他加密算法,因为它的范围从1.2毫秒到1.9毫秒。相反,DES的范围从1.3毫秒到3.1毫秒,3毫秒到3.6毫米,RC2毫秒到3.9毫秒,RSA毫秒到1.4毫秒,数据大小从910公斤不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Networks and Applications
International Journal of Computer Networks and Applications Computer Science-Computer Science Applications
CiteScore
2.30
自引率
0.00%
发文量
40
期刊最新文献
Co-Ordinated Blackhole and Grayhole Attack Detection Using Smart & Secure Ad Hoc On-Demand Distance Vector Routing Protocol in MANETs Resilient Artificial Bee Colony Optimized AODV Routing Protocol (RABCO-AODV-RP) for Minimizing the Energy Consumption in Flying Ad-Hoc Network TriChain: Kangaroo-Based Intrusion Detection for Secure Multipath Route Discovery and Route Maintenance in MANET Using Advanced Routing Protocol Expedient Intrusion Detection System in MANET Using Robust Dragonfly-Optimized Enhanced Naive Bayes (RDO-ENB) Vehicular Ad Hoc Networks Assisted Clustering Nodular Framework for Optimal Packet Routing and Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1