{"title":"Bounds in L1 Wasserstein distance on the normal approximation of general M-estimators","authors":"F. Bachoc, M. Fathi","doi":"10.1214/23-ejs2132","DOIUrl":null,"url":null,"abstract":"We derive quantitative bounds on the rate of convergence in $L^1$ Wasserstein distance of general M-estimators, with an almost sharp (up to a logarithmic term) behavior in the number of observations. We focus on situations where the estimator does not have an explicit expression as a function of the data. The general method may be applied even in situations where the observations are not independent. Our main application is a rate of convergence for cross validation estimation of covariance parameters of Gaussian processes.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejs2132","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We derive quantitative bounds on the rate of convergence in $L^1$ Wasserstein distance of general M-estimators, with an almost sharp (up to a logarithmic term) behavior in the number of observations. We focus on situations where the estimator does not have an explicit expression as a function of the data. The general method may be applied even in situations where the observations are not independent. Our main application is a rate of convergence for cross validation estimation of covariance parameters of Gaussian processes.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.