Information Design for Multiple Interdependent Defenders: Work Less, Pay Off More

IF 0.6 Q4 ECONOMICS Games Pub Date : 2023-01-30 DOI:10.3390/g14010012
Chenghan Zhou, Andrew Spivey, Haifeng Xu, T. Nguyen
{"title":"Information Design for Multiple Interdependent Defenders: Work Less, Pay Off More","authors":"Chenghan Zhou, Andrew Spivey, Haifeng Xu, T. Nguyen","doi":"10.3390/g14010012","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of information design in a general security game setting in which multiple self-interested defenders attempt to provide protection simultaneously for the same set of important targets against an unknown attacker. A principal, who can be one of the defenders, has access to certain private information (i.e., attacker type), whereas other defenders do not. We investigate the question of how that principal, with additional private information, can influence the decisions of the defenders by partially and strategically revealing her information. In particular, we develop a polynomial time ellipsoid algorithm to compute an optimal private signaling scheme. Our key finding is that the separation oracle in the ellipsoid approach can be carefully reduced to bipartite matching. Furthermore, we introduce a compact representation of any ex ante persuasive signaling schemes by exploiting intrinsic security resource allocation structures, enabling us to compute an optimal scheme significantly faster. Our experiment results show that by strategically revealing private information, the principal can significantly enhance the protection effectiveness for the targets.","PeriodicalId":35065,"journal":{"name":"Games","volume":"14 1","pages":"12"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/g14010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the problem of information design in a general security game setting in which multiple self-interested defenders attempt to provide protection simultaneously for the same set of important targets against an unknown attacker. A principal, who can be one of the defenders, has access to certain private information (i.e., attacker type), whereas other defenders do not. We investigate the question of how that principal, with additional private information, can influence the decisions of the defenders by partially and strategically revealing her information. In particular, we develop a polynomial time ellipsoid algorithm to compute an optimal private signaling scheme. Our key finding is that the separation oracle in the ellipsoid approach can be carefully reduced to bipartite matching. Furthermore, we introduce a compact representation of any ex ante persuasive signaling schemes by exploiting intrinsic security resource allocation structures, enabling us to compute an optimal scheme significantly faster. Our experiment results show that by strategically revealing private information, the principal can significantly enhance the protection effectiveness for the targets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重相互依存防御者的信息设计:工作少,回报多
本文研究了一般安全博弈环境下的信息设计问题,其中多个自利益防御者试图同时为同一组重要目标提供针对未知攻击者的保护。作为防御者之一的主体可以访问某些私有信息(即攻击者类型),而其他防御者则不能。我们调查的问题是,拥有额外私人信息的委托人如何通过部分和战略性地透露她的信息来影响辩护人的决定。特别地,我们开发了一个多项式时间椭球算法来计算最优私有信令方案。我们的关键发现是椭球体方法中的分离oracle可以被仔细地简化为二部匹配。此外,我们通过利用内在安全资源分配结构引入任何事前说服信令方案的紧凑表示,使我们能够显着更快地计算出最优方案。实验结果表明,通过有策略地披露隐私信息,委托人可以显著提高对目标的保护效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Games
Games Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.60
自引率
11.10%
发文量
65
审稿时长
11 weeks
期刊介绍: Games (ISSN 2073-4336) is an international, peer-reviewed, quick-refereeing open access journal (free for readers), which provides an advanced forum for studies related to strategic interaction, game theory and its applications, and decision making. The aim is to provide an interdisciplinary forum for all behavioral sciences and related fields, including economics, psychology, political science, mathematics, computer science, and biology (including animal behavior). To guarantee a rapid refereeing and editorial process, Games follows standard publication practices in the natural sciences.
期刊最新文献
Equilibrium Selection in Hawk–Dove Games Testing Game Theory of Mind Models for Artificial Intelligence Cooperation and Coordination in Threshold Public Goods Games with Asymmetric Players Collaborative Cost Multi-Agent Decision-Making Algorithm with Factored-Value Monte Carlo Tree Search and Max-Plus Generalized Hyperbolic Discounting in Security Games of Timing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1