A study on sensitivity of seismic site amplification factors to site conditions for bridges

M. Chaudhary
{"title":"A study on sensitivity of seismic site amplification factors to site conditions for bridges","authors":"M. Chaudhary","doi":"10.5459/bnzsee.51.4.197-211","DOIUrl":null,"url":null,"abstract":"Seismic site amplification factors and seismic design spectra for bridges are influenced by site conditions that include geotechnical properties of soil strata as well as the geological setting. All modern seismic design codes recognize this fact and assign design spectral shapes based on site conditions or specify a 2-parameter model with site amplification factors as a function of site class, seismic intensity and vibration period (short and long). Design codes made a number of assumptions related to the site conditions while specifying the values of short (Fa) and long period (Fv) site amplification factors. Making these assumptions was necessary due to vast variation in site properties and limited availability of actual strong motion records on all site conditions and seismic setting in a region. This paper conducted a sensitivity analysis for site amplification factors for site classes C and D in the AASHTO bridge design code by performing a 1-D site response analysis in which values of site parameters like strata depth, travel-time averaged shear wave velocity in the top 30 m strata (Vs30), plasticity index (PI), impedance contrast ratio (ICR) and intensity of seismic ground motion were varied. The results were analyzed to identify the site parameters that impacted Fa and Fv values for site classes C and D. The computed Fa and Fv values were compared with the corresponding values in the AASHTO bridge design code and it was found that the code-based Fa and Fv values were generally underestimated and overestimated respectively.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.51.4.197-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 7

Abstract

Seismic site amplification factors and seismic design spectra for bridges are influenced by site conditions that include geotechnical properties of soil strata as well as the geological setting. All modern seismic design codes recognize this fact and assign design spectral shapes based on site conditions or specify a 2-parameter model with site amplification factors as a function of site class, seismic intensity and vibration period (short and long). Design codes made a number of assumptions related to the site conditions while specifying the values of short (Fa) and long period (Fv) site amplification factors. Making these assumptions was necessary due to vast variation in site properties and limited availability of actual strong motion records on all site conditions and seismic setting in a region. This paper conducted a sensitivity analysis for site amplification factors for site classes C and D in the AASHTO bridge design code by performing a 1-D site response analysis in which values of site parameters like strata depth, travel-time averaged shear wave velocity in the top 30 m strata (Vs30), plasticity index (PI), impedance contrast ratio (ICR) and intensity of seismic ground motion were varied. The results were analyzed to identify the site parameters that impacted Fa and Fv values for site classes C and D. The computed Fa and Fv values were compared with the corresponding values in the AASHTO bridge design code and it was found that the code-based Fa and Fv values were generally underestimated and overestimated respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桥梁地震场地放大系数对场地条件的敏感性研究
桥梁的地震场地放大系数和地震设计谱受场地条件的影响,包括土层的岩土特性和地质背景。所有现代抗震设计规范都认识到这一事实,并根据场地条件分配设计谱形状,或指定一个2参数模型,其中场地放大系数作为场地类别、地震强度和振动周期(短和长)的函数。设计规范在规定短周期(Fa)和长周期(Fv)场地放大系数的值时,对场地条件做了一些假设。由于场地性质差异很大,而且在一个地区的所有场地条件和地震背景下,实际强震记录的可用性有限,因此做出这些假设是必要的。本文通过1-D场地响应分析,对AASHTO桥梁设计规范中C、D类场地的场地放大因子进行敏感性分析,其中场地参数包括地层深度、上30 m地层的行时平均横波速度(Vs30)、塑性指数(PI)、阻抗对比(ICR)和地震动烈度。通过对结果的分析,找出了影响C、d两类站点Fa和Fv值的站点参数,并将计算的Fa和Fv值与AASHTO桥梁设计规范中的相应值进行了比较,发现基于规范的Fa和Fv值普遍被低估和高估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations Seismic protection of artefacts with adhesives and base-isolation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1