NegML: A Privacy-Preserving Machine Learning Approach Based on Negative Database

{"title":"NegML: A Privacy-Preserving Machine Learning Approach Based on Negative Database","authors":"","doi":"10.30534/ijeter/2023/021112023","DOIUrl":null,"url":null,"abstract":"Machine learning has become an increasingly prominent subject in the age of big data. It has made significant advances in image identification, object detection, and natural language processing, among other areas. The initial aim of machine learning is to extract meaningful information from enormous amounts of data, which unavoidably raises privacy concerns. Numerous privacy-preserving machine-learning approaches have been presented so far. However, most of them suffer from significant improvements in efficiency or accuracy. A negative database (NDB) is a data representation that may safeguard data privacy by storing and exploiting the complementary form of original data. In this research, we provide NegML, a privacy-preserving machine learning approach based on NDB. Private data are first transformed to NDB before being fed into machine learning algorithms such as a Multilayer perceptron (MLP), Logistic regression (LR), Gaussian naive Bayes (GNB), Decision tree (DT), as well as Random forest (RF). NegML has the same computational complexity as the original machine learning algorithms without privacy protection. Experiment findings on heart illnesses, milk datasets, Car evaluation benchmark datasets and Blood fusion dataset show that the accuracy of NegML is equivalent to the original machine learning model in most circumstances, as well as the technique based on differential privacy.","PeriodicalId":13964,"journal":{"name":"International Journal of Emerging Trends in Engineering Research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Trends in Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijeter/2023/021112023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning has become an increasingly prominent subject in the age of big data. It has made significant advances in image identification, object detection, and natural language processing, among other areas. The initial aim of machine learning is to extract meaningful information from enormous amounts of data, which unavoidably raises privacy concerns. Numerous privacy-preserving machine-learning approaches have been presented so far. However, most of them suffer from significant improvements in efficiency or accuracy. A negative database (NDB) is a data representation that may safeguard data privacy by storing and exploiting the complementary form of original data. In this research, we provide NegML, a privacy-preserving machine learning approach based on NDB. Private data are first transformed to NDB before being fed into machine learning algorithms such as a Multilayer perceptron (MLP), Logistic regression (LR), Gaussian naive Bayes (GNB), Decision tree (DT), as well as Random forest (RF). NegML has the same computational complexity as the original machine learning algorithms without privacy protection. Experiment findings on heart illnesses, milk datasets, Car evaluation benchmark datasets and Blood fusion dataset show that the accuracy of NegML is equivalent to the original machine learning model in most circumstances, as well as the technique based on differential privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NegML:一种基于负数据库的隐私保护机器学习方法
在大数据时代,机器学习已经成为一门日益突出的学科。它在图像识别、目标检测和自然语言处理等领域取得了重大进展。机器学习的最初目的是从海量数据中提取有意义的信息,这不可避免地引发了对隐私的担忧。到目前为止,已经提出了许多保护隐私的机器学习方法。然而,它们中的大多数在效率或准确性方面都有显著的改进。负数据库(NDB)是一种数据表示形式,可以通过存储和利用原始数据的补充形式来保护数据隐私。在本研究中,我们提供了一种基于NDB的隐私保护机器学习方法NegML。私有数据首先转换为NDB,然后再输入机器学习算法,如多层感知器(MLP)、逻辑回归(LR)、高斯朴素贝叶斯(GNB)、决策树(DT)以及随机森林(RF)。在没有隐私保护的情况下,NegML具有与原始机器学习算法相同的计算复杂度。在心脏病、牛奶数据集、汽车评估基准数据集和血液融合数据集上的实验结果表明,在大多数情况下,NegML的准确率与原始机器学习模型相当,基于差分隐私的技术也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
70
期刊最新文献
An Effective Data Fusion Methodology for Multi-modal Emotion Recognition: A Survey The Transformative Role of Microsoft Azure AI in Healthcare Low Costs Electrical Calibration System of SLM with the Uncertainty Measurements Compared with Primary System Platform Brūel & Kjær type 3630 Analytical Model of a New Acoustic Conductor Lined with Linear Increasing Perforated Area Enhanced Sleep Quality Through Light Modulation IoT-Based Approach ESP32 with Philips Hue Integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1