{"title":"Temporal Howling Detector for Speech Reinforcement Systems","authors":"Yehav Alkaher, I. Cohen","doi":"10.3390/acoustics4040060","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of howling detection in speech reinforcement system applications for utilization in howling control mechanisms. A general speech reinforcement system acquires speech from a speaker’s microphone, and delivers a reinforced speech to other listeners in the same room, or another room, through loudspeakers. The amount of gain that can be applied to the acquired speech in the closed-loop system is constrained by electro-acoustic coupling in the system, manifested in howling noises appearing as a result of acoustic feedback. A howling detection algorithm aims to early detect frequency-howls in the system, before the human ear notices. The proposed algorithm includes two cascaded stages: Soft Howling Detection and Howling False-Alarm Detection. The Soft Howling Detection is based on the temporal magnitude-slope-deviation measure, identifying potential candidate frequency-howls. Inspired by the temporal approach, the Howling False-Alarm Detection stage considers the understanding of speech-signal frequency components’ magnitude behavior under different levels of acoustic feedback. A comprehensive howling detection performance evaluation process is designed, examining the proposed algorithm in terms of detection accuracy and the time it takes for detection, under a devised set of howling scenarios. The performance improvement of the proposed algorithm, with respect to a plain magnitude-slope-deviation-based method, is demonstrated by showing faster detection response times over a set of howling change-rate configurations. The two-staged proposed algorithm also provides a significant recall improvement, while improving the precision decrease via the Howling False-Alarm Detection stage.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics4040060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we address the problem of howling detection in speech reinforcement system applications for utilization in howling control mechanisms. A general speech reinforcement system acquires speech from a speaker’s microphone, and delivers a reinforced speech to other listeners in the same room, or another room, through loudspeakers. The amount of gain that can be applied to the acquired speech in the closed-loop system is constrained by electro-acoustic coupling in the system, manifested in howling noises appearing as a result of acoustic feedback. A howling detection algorithm aims to early detect frequency-howls in the system, before the human ear notices. The proposed algorithm includes two cascaded stages: Soft Howling Detection and Howling False-Alarm Detection. The Soft Howling Detection is based on the temporal magnitude-slope-deviation measure, identifying potential candidate frequency-howls. Inspired by the temporal approach, the Howling False-Alarm Detection stage considers the understanding of speech-signal frequency components’ magnitude behavior under different levels of acoustic feedback. A comprehensive howling detection performance evaluation process is designed, examining the proposed algorithm in terms of detection accuracy and the time it takes for detection, under a devised set of howling scenarios. The performance improvement of the proposed algorithm, with respect to a plain magnitude-slope-deviation-based method, is demonstrated by showing faster detection response times over a set of howling change-rate configurations. The two-staged proposed algorithm also provides a significant recall improvement, while improving the precision decrease via the Howling False-Alarm Detection stage.