Measuring the competitiveness of commodity markets using price signals and information theory

Anis Hoayek, Hassan Hamie
{"title":"Measuring the competitiveness of commodity markets using price signals and information theory","authors":"Anis Hoayek, Hassan Hamie","doi":"10.31181/dmame622023548","DOIUrl":null,"url":null,"abstract":"Technological advancements, abrupt changes in market conditions, and political reforms, among other things, necessitate strong regulatory oversight, and accurate measurement of performance related indicators. The more accurate, information rich, and transparent these measurements/signals, the lower the level of uncertainty felt by value chain participants, who are thus able to recognize and observe whether the market’s state is efficient. Its lack, may lead to indecisiveness, translating into false interpretations that could lead to wrong policy directions. This paper provides an ex-post evaluation tool intending to deliver additional insights or quality information that would aid the regulator in assessing the state of the market. The tool is applied to the UK wholesale natural gas market for the period between 2011 and 2020, assessing and testing the market’s weak-form efficiency. It claims that today’s gas prices reflect a specific type of information, primarily past gas prices, and that only new information can help predict future prices. In this manuscript, based solely on a limited and available untapped dataset (day-ahead price time series), and working under the assumption that gas prices are the result of market processes, a variety of information metrics (gas price randomness, distribution of extreme prices, ability to predict prices - based on historical sets) is extracted with the use of suitable mathematical statistical models. A weighted entropy index is then computed, and measures the state of the commodity market. The results indicate that the analysis has helped gain information, thus reducing uncertainty (relative to a pre-analysis) by 86.5 %. Additionally, there is sufficient evidence that the UK natural gas prices are weak-form efficient.","PeriodicalId":32695,"journal":{"name":"Decision Making Applications in Management and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Making Applications in Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31181/dmame622023548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Technological advancements, abrupt changes in market conditions, and political reforms, among other things, necessitate strong regulatory oversight, and accurate measurement of performance related indicators. The more accurate, information rich, and transparent these measurements/signals, the lower the level of uncertainty felt by value chain participants, who are thus able to recognize and observe whether the market’s state is efficient. Its lack, may lead to indecisiveness, translating into false interpretations that could lead to wrong policy directions. This paper provides an ex-post evaluation tool intending to deliver additional insights or quality information that would aid the regulator in assessing the state of the market. The tool is applied to the UK wholesale natural gas market for the period between 2011 and 2020, assessing and testing the market’s weak-form efficiency. It claims that today’s gas prices reflect a specific type of information, primarily past gas prices, and that only new information can help predict future prices. In this manuscript, based solely on a limited and available untapped dataset (day-ahead price time series), and working under the assumption that gas prices are the result of market processes, a variety of information metrics (gas price randomness, distribution of extreme prices, ability to predict prices - based on historical sets) is extracted with the use of suitable mathematical statistical models. A weighted entropy index is then computed, and measures the state of the commodity market. The results indicate that the analysis has helped gain information, thus reducing uncertainty (relative to a pre-analysis) by 86.5 %. Additionally, there is sufficient evidence that the UK natural gas prices are weak-form efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用价格信号和信息论衡量商品市场的竞争力
技术进步、市场条件的突然变化和政治改革等都需要强有力的监管和对绩效指标的准确衡量。这些测量/信号越准确、信息越丰富、越透明,价值链参与者感受到的不确定性水平就越低,因此他们能够识别和观察市场状态是否有效。它的缺乏可能导致犹豫不决,转化为错误的解释,可能导致错误的政策方向。本文提供了一种事后评估工具,旨在提供额外的见解或质量信息,帮助监管机构评估市场状况。该工具适用于2011年至2020年期间的英国天然气批发市场,评估和测试市场的弱形式效率。它声称,今天的天然气价格反映了一种特定类型的信息,主要是过去的天然气定价,只有新的信息才能帮助预测未来的价格。在这份手稿中,仅基于有限且可用的未开发数据集(日前价格时间序列),并在天然气价格是市场过程的结果的假设下工作,使用合适的数学统计模型提取了各种信息度量(天然气价格的随机性、极端价格的分布、基于历史集预测价格的能力)。然后计算加权熵指数,并衡量商品市场的状态。结果表明,分析有助于获得信息,从而将不确定性(相对于预分析)降低了86.5%。此外,有充分的证据表明,英国天然气价格表现疲软。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Decision Making Applications in Management and Engineering
Decision Making Applications in Management and Engineering Decision Sciences-General Decision Sciences
CiteScore
14.40
自引率
0.00%
发文量
35
审稿时长
14 weeks
期刊最新文献
A hybrid method for occupations selection in the bio-circular-green economy project of the national housing authority in Thailand Random centroid initialization for improving centroid-based clustering Evaluating and Ranking Metaverse Platforms Using Intuitionistic Trapezoidal Fuzzy VIKOR MCDM: Incorporating Score and Accuracy Functions for Comprehensive Assessment The New Measures of Lorenz Curve Asymmetry: Formulation and Hypothesis Testing Business Process Redesign: A Systematic Review of Evaluation Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1