P. Pholnak, Jidapa Khongbun, Kullanan Suksom, M. Lertworapreecha, S. Suwanboon, C. Sirisathitkul
{"title":"Antifungal Efficacy of Chitosan-Modified Zinc Oxide Nanoparticles on Tube Sedge Products","authors":"P. Pholnak, Jidapa Khongbun, Kullanan Suksom, M. Lertworapreecha, S. Suwanboon, C. Sirisathitkul","doi":"10.22052/JNS.2020.02.020","DOIUrl":null,"url":null,"abstract":"The antifungal properties of ZnO were implemented in the real handicraft and showed promising results for the value addition of local products by sun-screen and fungi protections. The inhibition of Aspergillus sp. growth on tube sedge basketry by zinc oxide (ZnO) was demonstrated. ZnO nanoparticles synthesized with chitosan capping agents were analyzed by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectrophotometry and thermogravimetric analysis (TGA). The crystallite size consistent with electron microscope images and surface area of ZnO were dependent on the amounts of chitosan. ZnO exhibited a large ultraviolet (UV) absorbance in an entire 200-400 nm range when large crystallites agglomerated into bulky aggregates. In the case of small amounts of chitosan used, small crystallites tending to agglomerate in close contacts enhanced antifungal activity on pieces of tube sedge basketry. The fungi inhibition by this chitosan-modified ZnO was attributed to the stress response in fungal hyphae and generation of hydrogen peroxide.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"424-433"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.02.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The antifungal properties of ZnO were implemented in the real handicraft and showed promising results for the value addition of local products by sun-screen and fungi protections. The inhibition of Aspergillus sp. growth on tube sedge basketry by zinc oxide (ZnO) was demonstrated. ZnO nanoparticles synthesized with chitosan capping agents were analyzed by X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectrophotometry and thermogravimetric analysis (TGA). The crystallite size consistent with electron microscope images and surface area of ZnO were dependent on the amounts of chitosan. ZnO exhibited a large ultraviolet (UV) absorbance in an entire 200-400 nm range when large crystallites agglomerated into bulky aggregates. In the case of small amounts of chitosan used, small crystallites tending to agglomerate in close contacts enhanced antifungal activity on pieces of tube sedge basketry. The fungi inhibition by this chitosan-modified ZnO was attributed to the stress response in fungal hyphae and generation of hydrogen peroxide.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.