K. Madlum, E. J. Khamees, Shaymaa Abdulridha Ahmed, R. Naji
{"title":"Antimicrobial and Cytotoxic Activity of Platinum Nanoparticles Synthesized by Laser Ablation Technique","authors":"K. Madlum, E. J. Khamees, Shaymaa Abdulridha Ahmed, R. Naji","doi":"10.22052/JNS.2021.01.002","DOIUrl":null,"url":null,"abstract":"An ablative pulsed laser is an efficient physical technique for nanomaterial synthesis, particularly ablation of solids in liquid environments. This method is much simpler than chemical methods and produces highly purified nanoparticles with weak agglomeration effects. This study aimed to fabricate new nanoparticles with unique biological activity. Platinum nanoparticles (PtNPs) were prepared striking platinum plate with Nd-YAG (1064 nm) laser pulses in double deionized water (DDW) for a total number of pulses of (100 and 150). NPs samples were characterized using a Transmission Electron Microscope (TEM) and UV-Visible, double beam spectrophotometer. To evaluate the biological activity, three types of pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, E. coli, and Candida albicans) and two cell lines (Hepa 1-6) hepatoma and MDCK cells were used. High-purity platinum nanoparticles (PtNPs) with two particle sizes (10 and 20 nm) have been successfully synthesized. The antimicrobial assay showed high anti-pseudomonas activity of these nanoparticles while it showed no effects on other organisms. PtNPs with a particle size of 10 nm showed higher toxicity than PtNPs with a particle size of (20 nm) at the same concentrations used. MTT assay showed that PtNPs have high cytotoxic effects on carcinoma cell lines at low concentrations. As a conclusion, PtNPs showed promising selective antibacterial activity against P. aeruginosa as well as an inhibitory effect on the cancer cell line. These nanoparticles can be used to treat complicated pseudomonas infections.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"11 1","pages":"13-19"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2021.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
An ablative pulsed laser is an efficient physical technique for nanomaterial synthesis, particularly ablation of solids in liquid environments. This method is much simpler than chemical methods and produces highly purified nanoparticles with weak agglomeration effects. This study aimed to fabricate new nanoparticles with unique biological activity. Platinum nanoparticles (PtNPs) were prepared striking platinum plate with Nd-YAG (1064 nm) laser pulses in double deionized water (DDW) for a total number of pulses of (100 and 150). NPs samples were characterized using a Transmission Electron Microscope (TEM) and UV-Visible, double beam spectrophotometer. To evaluate the biological activity, three types of pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, E. coli, and Candida albicans) and two cell lines (Hepa 1-6) hepatoma and MDCK cells were used. High-purity platinum nanoparticles (PtNPs) with two particle sizes (10 and 20 nm) have been successfully synthesized. The antimicrobial assay showed high anti-pseudomonas activity of these nanoparticles while it showed no effects on other organisms. PtNPs with a particle size of 10 nm showed higher toxicity than PtNPs with a particle size of (20 nm) at the same concentrations used. MTT assay showed that PtNPs have high cytotoxic effects on carcinoma cell lines at low concentrations. As a conclusion, PtNPs showed promising selective antibacterial activity against P. aeruginosa as well as an inhibitory effect on the cancer cell line. These nanoparticles can be used to treat complicated pseudomonas infections.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.