Editorial: Data-driven machine learning for advancing hydrological and hydraulic predictability

IF 2.6 Q2 WATER RESOURCES Frontiers in Water Pub Date : 2023-06-01 DOI:10.3389/frwa.2023.1215966
Dan Lu, Tiantian Yang, Xiaofeng Liu
{"title":"Editorial: Data-driven machine learning for advancing hydrological and hydraulic predictability","authors":"Dan Lu, Tiantian Yang, Xiaofeng Liu","doi":"10.3389/frwa.2023.1215966","DOIUrl":null,"url":null,"abstract":"COPYRIGHT © 2023 Lu, Yang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Editorial: Data-driven machine learning for advancing hydrological and hydraulic predictability","PeriodicalId":33801,"journal":{"name":"Frontiers in Water","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frwa.2023.1215966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

COPYRIGHT © 2023 Lu, Yang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Editorial: Data-driven machine learning for advancing hydrological and hydraulic predictability
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社论:数据驱动的机器学习提高水文和水力可预测性
版权所有©2023鲁、杨和刘。这是一篇根据知识共享署名许可(CC BY)条款发布的开放获取文章。根据公认的学术惯例,允许在其他论坛上使用、分发或复制,前提是原作者和版权所有人得到认可,并引用本期刊上的原始出版物。不允许使用、分发或复制不符合这些条款的内容。社论:数据驱动的机器学习用于提高水文和水力可预测性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Water
Frontiers in Water WATER RESOURCES-
CiteScore
4.00
自引率
6.90%
发文量
224
审稿时长
13 weeks
期刊最新文献
River-floodplain connectivity and residence times controlled by topographic bluffs along a backwater transition Rating curve development and uncertainty analysis in mountainous watersheds for informed hydrology and resource management Characterization of sewage quality and its spatiotemporal variations in a small town in Eastern Guangdong, China Model and remote-sensing-guided experimental design and hypothesis generation for monitoring snow-soil–plant interactions Precipitation fuels dissolved greenhouse gas (CO2, CH4, N2O) dynamics in a peatland-dominated headwater stream: results from a continuous monitoring setup
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1