Seismic performance analysis and evaluation of tall structures using grille‐type steel plate composite shear walls

IF 1.8 3区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Structural Design of Tall and Special Buildings Pub Date : 2023-06-06 DOI:10.1002/tal.2037
Qiao Yu, Hao Wu, Ling-zhi Li, E. Ogail, Qingyun Liu, Xuelian Zhao, Yang Liu
{"title":"Seismic performance analysis and evaluation of tall structures using grille‐type steel plate composite shear walls","authors":"Qiao Yu, Hao Wu, Ling-zhi Li, E. Ogail, Qingyun Liu, Xuelian Zhao, Yang Liu","doi":"10.1002/tal.2037","DOIUrl":null,"url":null,"abstract":"Grille‐type steel plate composite (GSPC) shear wall is an innovative wall system consisting of concrete cores, steel faceplates, steel tie plates, and steel channels with more advantages than conventional reinforced concrete (RC) walls, including better ductility, higher bearing capacity, and easy‐modular characteristics. This paper mainly discusses the seismic performance and damage resistance of GSPC walls to the entire structure from the aspect of the structural level. Three nonlinear numerical models of high‐rise structures with different structural heights and types were established by PERFORM‐3D software to study the influence of GSPC walls on the change in structural internal forces and deformations compared with RC walls. One of these structures was selected to conduct the seismic fragility analysis based on the incremental dynamic analysis and to assess the structure's seismic performance with GSPC walls. Finally, the seismic damage prediction method was used to evaluate the damage levels of the GSPC wall structure. Results indicate that the structures with GSPC walls suffer more significant seismic forces than those with RC walls, although they experience lesser structural deformations. Moreover, GSPC walls can effectively improve the structure's collapse and seismic damage resistance.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2037","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grille‐type steel plate composite (GSPC) shear wall is an innovative wall system consisting of concrete cores, steel faceplates, steel tie plates, and steel channels with more advantages than conventional reinforced concrete (RC) walls, including better ductility, higher bearing capacity, and easy‐modular characteristics. This paper mainly discusses the seismic performance and damage resistance of GSPC walls to the entire structure from the aspect of the structural level. Three nonlinear numerical models of high‐rise structures with different structural heights and types were established by PERFORM‐3D software to study the influence of GSPC walls on the change in structural internal forces and deformations compared with RC walls. One of these structures was selected to conduct the seismic fragility analysis based on the incremental dynamic analysis and to assess the structure's seismic performance with GSPC walls. Finally, the seismic damage prediction method was used to evaluate the damage levels of the GSPC wall structure. Results indicate that the structures with GSPC walls suffer more significant seismic forces than those with RC walls, although they experience lesser structural deformations. Moreover, GSPC walls can effectively improve the structure's collapse and seismic damage resistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
格栅型钢板组合剪力墙高层结构抗震性能分析与评价
格栅式钢板组合剪力墙是一种创新的墙体系,由混凝土芯、钢面板、钢连接板和槽钢组成,比传统钢筋混凝土墙具有更好的延性、更高的承载力和易于模块化的特点。本文主要从结构层面探讨了GSPC墙体的抗震性能和对整个结构的抗破坏性。采用PERFORM‐3D软件建立了三个不同结构高度和类型的高层结构非线性数值模型,研究了与RC墙相比,GSPC墙对结构内力和变形变化的影响。选择其中一个结构进行基于增量动力分析的地震易损性分析,并评估GSPC墙结构的抗震性能。最后,利用地震损伤预测方法对GSPC墙体结构的损伤程度进行了评价。结果表明,具有GSPC墙的结构比具有RC墙的结构承受更大的地震力,尽管它们经历的结构变形较小。此外,GSPC墙可以有效地提高结构的抗倒塌性和抗震破坏性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
4.20%
发文量
83
审稿时长
6-12 weeks
期刊介绍: The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this. The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics. However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.
期刊最新文献
Finite element simulation and strength evaluation on innovative and traditional composite shear wall systems Study on seismic performance test and calculation method of recycled steel fiber reinforced concrete shear wall CFD simulation of wind loads of kilometer‐scale super tall buildings with typical configurations in veering wind field Effect of load details of the successive explosions on the blast behaviors of reinforced concrete beams Improving the behavior of concentrically braced frame braces using a flexural damper: Experimental and numerical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1