{"title":"MD Simulation of AEDG Peptide Complexes with New K2R Dendrimer and Dendrigraft","authors":"E. Fatullaev, V. Bezrodnyi, I. Neelov","doi":"10.46300/91011.2022.16.9","DOIUrl":null,"url":null,"abstract":"Biocompatible peptide dendrimers and dendrigrafts have useful properties for application in biomedicine. In previous papers the computational approach for study lysine dendrimers and dendrigrafts as well as their complexes with various medical peptides was used. In this paper the comparison of complex formation between molecules of therapeutic AEDG tetrapeptide and novel K2R peptide dendrimer or DG2 dendrigraft of near the same size and charge was fulfilled. The systems consisting of 16 therapeutic AEDG tetrapeptide molecules and one dendrimer or one dendrigraft were studied by molecular dynamics simulation. Full atomic models of these molecules in water with explicit counterions were used for this goal. First of all, the process of complex formation was studied. It was obtained that peptide molecules were attracted by both branched molecules and were quickly adsorbed by them. Times of complexes formation as well as size, anisotropy and structure of each complex were calculated. It was demonstrated that both K2R dendrimer and DG2 dendrigraft are effective for complexation of these peptide molecules but new dendrimer complex is more stable than dendrigraft complex because it has almost twice more hydrogen bonds with peptide molecules and 33% more ion pairs with their charged groups.","PeriodicalId":53488,"journal":{"name":"International Journal of Biology and Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biology and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/91011.2022.16.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Biocompatible peptide dendrimers and dendrigrafts have useful properties for application in biomedicine. In previous papers the computational approach for study lysine dendrimers and dendrigrafts as well as their complexes with various medical peptides was used. In this paper the comparison of complex formation between molecules of therapeutic AEDG tetrapeptide and novel K2R peptide dendrimer or DG2 dendrigraft of near the same size and charge was fulfilled. The systems consisting of 16 therapeutic AEDG tetrapeptide molecules and one dendrimer or one dendrigraft were studied by molecular dynamics simulation. Full atomic models of these molecules in water with explicit counterions were used for this goal. First of all, the process of complex formation was studied. It was obtained that peptide molecules were attracted by both branched molecules and were quickly adsorbed by them. Times of complexes formation as well as size, anisotropy and structure of each complex were calculated. It was demonstrated that both K2R dendrimer and DG2 dendrigraft are effective for complexation of these peptide molecules but new dendrimer complex is more stable than dendrigraft complex because it has almost twice more hydrogen bonds with peptide molecules and 33% more ion pairs with their charged groups.
期刊介绍:
Topics: Molecular Dynamics, Biochemistry, Biophysics, Quantum Chemistry, Molecular Biology, Cell Biology, Immunology, Neurophysiology, Genetics, Population Dynamics, Dynamics of Diseases, Bioecology, Epidemiology, Social Dynamics, PhotoBiology, PhotoChemistry, Plant Biology, Microbiology, Immunology, Bioinformatics, Signal Transduction, Environmental Systems, Psychological and Cognitive Systems, Pattern Formation, Evolution, Game Theory and Adaptive Dynamics, Bioengineering, Biotechnolgies, Medical Imaging, Medical Signal Processing, Feedback Control in Biology and Chemistry, Fluid Mechanics and Applications in Biomedicine, Space Medicine and Biology, Nuclear Biology and Medicine.