Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu
{"title":"Recent Developments in Biobased Foams and Foam Composites for Construction Applications","authors":"Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu","doi":"10.1002/cben.202300014","DOIUrl":null,"url":null,"abstract":"<p>A surge of research into renewable foams has yielded an array of high-performance polymeric materials, many of which exhibit promising properties for next generation thermal insulating materials. Biobased materials are of particular interest, due to growing concerns towards enhancing the circular economy while reducing fossil fuel dependency in the construction industry. This review outlines recent developments in biobased foams based on biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF) and cellulose nanofibers (CNF) foams. These three areas of polymers are of particular interest due to their early stage of market adoption, yet significant industrial potential. As our focus is on construction materials, we will review their thermal, mechanical, and fire-retardant performance, their synthesis/fabrication methods and future prospects. Improving the scalability, reproducibility and cost-effectiveness of their production is vital for successful commercialization adoption.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 1","pages":"7-38"},"PeriodicalIF":6.2000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A surge of research into renewable foams has yielded an array of high-performance polymeric materials, many of which exhibit promising properties for next generation thermal insulating materials. Biobased materials are of particular interest, due to growing concerns towards enhancing the circular economy while reducing fossil fuel dependency in the construction industry. This review outlines recent developments in biobased foams based on biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF) and cellulose nanofibers (CNF) foams. These three areas of polymers are of particular interest due to their early stage of market adoption, yet significant industrial potential. As our focus is on construction materials, we will review their thermal, mechanical, and fire-retardant performance, their synthesis/fabrication methods and future prospects. Improving the scalability, reproducibility and cost-effectiveness of their production is vital for successful commercialization adoption.
ChemBioEng ReviewsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍:
Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,