Recent Developments in Biobased Foams and Foam Composites for Construction Applications

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL ChemBioEng Reviews Pub Date : 2023-08-29 DOI:10.1002/cben.202300014
Glen Cletus DSouza, Harrison Ng, Paul Charpentier, Chunbao Charles Xu
{"title":"Recent Developments in Biobased Foams and Foam Composites for Construction Applications","authors":"Glen Cletus DSouza,&nbsp;Harrison Ng,&nbsp;Paul Charpentier,&nbsp;Chunbao Charles Xu","doi":"10.1002/cben.202300014","DOIUrl":null,"url":null,"abstract":"<p>A surge of research into renewable foams has yielded an array of high-performance polymeric materials, many of which exhibit promising properties for next generation thermal insulating materials. Biobased materials are of particular interest, due to growing concerns towards enhancing the circular economy while reducing fossil fuel dependency in the construction industry. This review outlines recent developments in biobased foams based on biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF) and cellulose nanofibers (CNF) foams. These three areas of polymers are of particular interest due to their early stage of market adoption, yet significant industrial potential. As our focus is on construction materials, we will review their thermal, mechanical, and fire-retardant performance, their synthesis/fabrication methods and future prospects. Improving the scalability, reproducibility and cost-effectiveness of their production is vital for successful commercialization adoption.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 1","pages":"7-38"},"PeriodicalIF":6.2000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cben.202300014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A surge of research into renewable foams has yielded an array of high-performance polymeric materials, many of which exhibit promising properties for next generation thermal insulating materials. Biobased materials are of particular interest, due to growing concerns towards enhancing the circular economy while reducing fossil fuel dependency in the construction industry. This review outlines recent developments in biobased foams based on biobased polyurethanes (BPU), biobased phenol formaldehyde (BPF) and cellulose nanofibers (CNF) foams. These three areas of polymers are of particular interest due to their early stage of market adoption, yet significant industrial potential. As our focus is on construction materials, we will review their thermal, mechanical, and fire-retardant performance, their synthesis/fabrication methods and future prospects. Improving the scalability, reproducibility and cost-effectiveness of their production is vital for successful commercialization adoption.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑用生物基泡沫和泡沫复合材料的最新进展
对可再生泡沫的大量研究已经产生了一系列高性能聚合物材料,其中许多材料表现出下一代隔热材料的良好性能。生物基材料尤其令人感兴趣,因为人们越来越关注加强循环经济,同时减少建筑行业对化石燃料的依赖。本文综述了基于生物基聚氨酯(BPU)、生物基酚甲醛(BPF)和纤维素纳米纤维(CNF)泡沫的生物基泡沫的最新进展。这三个领域的聚合物由于其市场采用的早期阶段而具有重要的工业潜力,因此特别令人感兴趣。由于我们的重点是建筑材料,我们将回顾他们的热,机械和阻燃性能,他们的合成/制造方法和未来的前景。提高其生产的可扩展性、可重复性和成本效益对于成功的商业化应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
期刊最新文献
Cover Picture: ChemBioEng Reviews 5/2024 Masthead: ChemBioEng Reviews 5/2024 Table of Contents: ChemBioEng Reviews 5/2024 Anaerobic Digestion for Textile Waste Treatment and Valorization Glycerol as a Feedstock for Chemical Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1