Jordan Brook, A. Protat, C. Potvin, J. Soderholm, H. McGowan
{"title":"The Effects of Spatial Interpolation on a Novel, Dual-Doppler 3D Wind Retrieval Technique","authors":"Jordan Brook, A. Protat, C. Potvin, J. Soderholm, H. McGowan","doi":"10.1175/jtech-d-23-0004.1","DOIUrl":null,"url":null,"abstract":"\nThree-dimensional wind retrievals from ground-based Doppler radars have played an important role in meteorological research and nowcasting over the past four decades. However, in recent years, the proliferation of open-source software and increased demands from applications such as convective parameterizations in numerical weather prediction models has led to a renewed interest in these analyses. In this study, we analyze how a major, yet often-overlooked, error source effects the quality of retrieved 3D wind fields. Namely, we investigate the effects of spatial interpolation, and show how the common practice of pre-gridding radial velocity data can degrade the accuracy of the results. Alternatively, we show that assimilating radar data directly at their observation locations improves the retrieval of important dynamic features such as the rear flank downdraft and mesocyclone within supercells, while also reducing errors in vertical vorticity, horizontal divergence, and all three velocity components.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0004.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 1
Abstract
Three-dimensional wind retrievals from ground-based Doppler radars have played an important role in meteorological research and nowcasting over the past four decades. However, in recent years, the proliferation of open-source software and increased demands from applications such as convective parameterizations in numerical weather prediction models has led to a renewed interest in these analyses. In this study, we analyze how a major, yet often-overlooked, error source effects the quality of retrieved 3D wind fields. Namely, we investigate the effects of spatial interpolation, and show how the common practice of pre-gridding radial velocity data can degrade the accuracy of the results. Alternatively, we show that assimilating radar data directly at their observation locations improves the retrieval of important dynamic features such as the rear flank downdraft and mesocyclone within supercells, while also reducing errors in vertical vorticity, horizontal divergence, and all three velocity components.
期刊介绍:
The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.