Iram Arman, Khursheed B. Ansari, Mohammad Danish, I. H. Farooqi, Arinjay K. Jain
{"title":"Ultrasonic-Assisted Feedstock Disintegration for Improved Biogas Production in Anaerobic Digestion: A Review","authors":"Iram Arman, Khursheed B. Ansari, Mohammad Danish, I. H. Farooqi, Arinjay K. Jain","doi":"10.1007/s12155-023-10608-4","DOIUrl":null,"url":null,"abstract":"<div><p>Diverse feedstocks utilized in anaerobic digestion (AD) pose challenges to enzymatic disintegration because of their nature and complex physical structures and thereby limiting biogas generation. To overcome this, the AD process is often combined with pretreatment techniques, which facilitate the breaking of organic feedstock into smaller molecules and eventually result in enhanced biogas production. Among several techniques, ultrasound-assisted pretreatment of AD feedstock remains promising because it is simple to implement, requires no chemicals, and combines physical (or cavitation) and biological phenomena for degrading AD feed. This review is primarily centered on the applications of ultrasound pretreatment for disintegrating various feedstocks and increasing biogas production during AD. Biogas generation is described in relation to the ultrasound-assisted disintegration of dairy industry waste, hybrid food and municipal wastes, olive mill wastewater, rice straw, tannery wastewater, meat processing sludge, hybrid industrial waste municipal sewage sludge, and lignocellulosic biomass. The disintegration schemes of feedstocks under ultrasound are proposed. COD is solubilized, and suspended solids (SS) are reduced upon ultrasonication. The impact of ultrasonic treatment on biogas production might be amplified if paired with alkali. Furthermore, the techno-economic commercial scopes of ultrasound pretreatment-based biogas production are discussed, and recommendations for future studies are suggested.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"16 3","pages":"1512 - 1527"},"PeriodicalIF":3.1000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-023-10608-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
Diverse feedstocks utilized in anaerobic digestion (AD) pose challenges to enzymatic disintegration because of their nature and complex physical structures and thereby limiting biogas generation. To overcome this, the AD process is often combined with pretreatment techniques, which facilitate the breaking of organic feedstock into smaller molecules and eventually result in enhanced biogas production. Among several techniques, ultrasound-assisted pretreatment of AD feedstock remains promising because it is simple to implement, requires no chemicals, and combines physical (or cavitation) and biological phenomena for degrading AD feed. This review is primarily centered on the applications of ultrasound pretreatment for disintegrating various feedstocks and increasing biogas production during AD. Biogas generation is described in relation to the ultrasound-assisted disintegration of dairy industry waste, hybrid food and municipal wastes, olive mill wastewater, rice straw, tannery wastewater, meat processing sludge, hybrid industrial waste municipal sewage sludge, and lignocellulosic biomass. The disintegration schemes of feedstocks under ultrasound are proposed. COD is solubilized, and suspended solids (SS) are reduced upon ultrasonication. The impact of ultrasonic treatment on biogas production might be amplified if paired with alkali. Furthermore, the techno-economic commercial scopes of ultrasound pretreatment-based biogas production are discussed, and recommendations for future studies are suggested.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.