{"title":"Control of Pneumatic Artificial Muscle actuated Two DOF Robot Using PD Based PWM Strategy with Feed Forward Outer Control Loop","authors":"Sushant Maurya, A. Dutta","doi":"10.1115/1.4062212","DOIUrl":null,"url":null,"abstract":"\n This work presents a novel approach for the design and control of a two degrees of freedom (DOF) robotic manipulator driven by one pneumatic artificial muscle (PAM) and one passive spring for each of its DOFs. The required air pressure is supplied to the PAMs using fast switching on/off type pneumatic flow control valves. The proposed control architecture uses a PD controller with a feed-forward term in the outer control loop to correct the position errors using an approximate model of the system dynamics and approximate PAM force-contraction characteristics. An inner pressure regulator loop tracks the reference pressure signals supplied by the outer loop using a pulse width modulation (PWM) scheme to control the pneumatic valves based on the approximated inflation-deflation characteristics for the given pneumatic flow circuit. The proposed controller is unique for PAM actuated robots that simultaneously considers three levels of complications, viz. coupled dynamics of multi-degrees of freedom system, non-linearities in the force-contraction characteristics of PAMs, and nonlinearities involved in the use of on/off type pneumatic flow control valves. Experiments carried out using a laboratory prototype validate the effectiveness of the proposed control scheme.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062212","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a novel approach for the design and control of a two degrees of freedom (DOF) robotic manipulator driven by one pneumatic artificial muscle (PAM) and one passive spring for each of its DOFs. The required air pressure is supplied to the PAMs using fast switching on/off type pneumatic flow control valves. The proposed control architecture uses a PD controller with a feed-forward term in the outer control loop to correct the position errors using an approximate model of the system dynamics and approximate PAM force-contraction characteristics. An inner pressure regulator loop tracks the reference pressure signals supplied by the outer loop using a pulse width modulation (PWM) scheme to control the pneumatic valves based on the approximated inflation-deflation characteristics for the given pneumatic flow circuit. The proposed controller is unique for PAM actuated robots that simultaneously considers three levels of complications, viz. coupled dynamics of multi-degrees of freedom system, non-linearities in the force-contraction characteristics of PAMs, and nonlinearities involved in the use of on/off type pneumatic flow control valves. Experiments carried out using a laboratory prototype validate the effectiveness of the proposed control scheme.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.