Pub Date : 2024-08-01Epub Date: 2024-01-12DOI: 10.1115/1.4064281
Zihan Yu, Qiaode Jeffrey Ge, Mark P Langer, Mona Arbab
This paper studies the statistical concept of confidence region for a set of uncertain planar displacements with a certain level of confidence or probabilities. Three different representations of planar displacements are compared in this context and it is shown that the most commonly used representation based on the coordinates of the moving frame is the least effective. The other two methods, namely the exponential coordinates and planar quaternions, are equally effective in capturing the group structure of SE(2). However, the former relies on the exponential map to parameterize an element of SE(2), while the latter uses a quadratic map, which is often more advantageous computationally. This paper focus on the use of planar quaternions to develop a method for computing the confidence region for a given set of uncertain planar displacements. Principal component analysis (PCA) is another tool used in our study to capture the dominant direction of movements. To demonstrate the effectiveness of our approach, we compare it to an existing method called rotational and translational confidence limit (RTCL). Our examples show that the planar quaternion formulation leads to a swept volume that is more compact and more effective than the RTCL method, especially in cases when off-axis rotation is present.
{"title":"On the Construction of Confidence Regions for Uncertain Planar Displacements.","authors":"Zihan Yu, Qiaode Jeffrey Ge, Mark P Langer, Mona Arbab","doi":"10.1115/1.4064281","DOIUrl":"10.1115/1.4064281","url":null,"abstract":"<p><p>This paper studies the statistical concept of confidence region for a set of uncertain planar displacements with a certain level of confidence or probabilities. Three different representations of planar displacements are compared in this context and it is shown that the most commonly used representation based on the coordinates of the moving frame is the least effective. The other two methods, namely the exponential coordinates and planar quaternions, are equally effective in capturing the group structure of SE(2). However, the former relies on the exponential map to parameterize an element of SE(2), while the latter uses a quadratic map, which is often more advantageous computationally. This paper focus on the use of planar quaternions to develop a method for computing the confidence region for a given set of uncertain planar displacements. Principal component analysis (PCA) is another tool used in our study to capture the dominant direction of movements. To demonstrate the effectiveness of our approach, we compare it to an existing method called rotational and translational confidence limit (RTCL). Our examples show that the planar quaternion formulation leads to a swept volume that is more compact and more effective than the RTCL method, especially in cases when off-axis rotation is present.</p>","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"16 8","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract A redundant serial manipulator inverse position kinematic mapping is employed to define a new manipulator operational space differentiable manifold and an associated system of well posed differential equations of manipulator dynamics. A review of deficiencies in the conventional generalized inverse velocity approach to manipulator redundancy resolution and a numerical example show that the generalized inverse velocity approach is incompatible with the kinematics of redundant serial manipulators. An inverse position kinematic mapping is presented with a differentiable manifold that is parameterized by either input or operational space coordinates. Differentiation of the inverse position mapping yields an inverse velocity mapping that is a total differential, in contrast with generalized inverse velocity mappings, hence avoiding the deficiencies identified. A sec-ond differentiation yields an inverse acceleration mapping that is used, without ad-hoc derivation, to obtain a system of well posed operational space ordinary differential equations of redundant manipulator dynamics that are equivalent to the equations of multibody dynamics.
{"title":"Redundant Serial Manipulator Inverse Position Kinematics and Dynamics","authors":"Edward J. Haug","doi":"10.1115/1.4064047","DOIUrl":"https://doi.org/10.1115/1.4064047","url":null,"abstract":"Abstract A redundant serial manipulator inverse position kinematic mapping is employed to define a new manipulator operational space differentiable manifold and an associated system of well posed differential equations of manipulator dynamics. A review of deficiencies in the conventional generalized inverse velocity approach to manipulator redundancy resolution and a numerical example show that the generalized inverse velocity approach is incompatible with the kinematics of redundant serial manipulators. An inverse position kinematic mapping is presented with a differentiable manifold that is parameterized by either input or operational space coordinates. Differentiation of the inverse position mapping yields an inverse velocity mapping that is a total differential, in contrast with generalized inverse velocity mappings, hence avoiding the deficiencies identified. A sec-ond differentiation yields an inverse acceleration mapping that is used, without ad-hoc derivation, to obtain a system of well posed operational space ordinary differential equations of redundant manipulator dynamics that are equivalent to the equations of multibody dynamics.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"98 27","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135091878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Origami structures have been widely used in soft robots, mechanical metamaterials, architectural engineering and biomedical engineering in recent years, benefiting from their reconfigurable shape morphing and tunable mechanical properties through folding and unfolding. In this work, we construct a new origami structure named ring origami spring (ROS) by alternately folding two perpendicularly arranged paper ribbons with the same size and connecting two ends of them. ROS can achieve an eversion morphing with four stable states, based on which both underwater locomotion and traversing water-air interface have been implemented. Theoretical models for characterizing the eversion morphing during the transition of stable states and the induced locomotion performance of ROS have been developed, and the theoretical predictions are in good agreement with the experimental results. The current work provides a new strategy for the design of origami robots, which is potentially applied in exploring complex environments.
{"title":"Ring origami spring capable of eversion morphing","authors":"Yu Zou, Chen Qianying, Lu Lu, Xiying Li, Hongyuan Li, Li-Hua Shao, Huiling Duan, Pengyu Lv","doi":"10.1115/1.4063978","DOIUrl":"https://doi.org/10.1115/1.4063978","url":null,"abstract":"Abstract Origami structures have been widely used in soft robots, mechanical metamaterials, architectural engineering and biomedical engineering in recent years, benefiting from their reconfigurable shape morphing and tunable mechanical properties through folding and unfolding. In this work, we construct a new origami structure named ring origami spring (ROS) by alternately folding two perpendicularly arranged paper ribbons with the same size and connecting two ends of them. ROS can achieve an eversion morphing with four stable states, based on which both underwater locomotion and traversing water-air interface have been implemented. Theoretical models for characterizing the eversion morphing during the transition of stable states and the induced locomotion performance of ROS have been developed, and the theoretical predictions are in good agreement with the experimental results. The current work provides a new strategy for the design of origami robots, which is potentially applied in exploring complex environments.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"39 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Despite significant performance advantages, the intractable forward kinematics have always restricted the application of parallel manipulators to small posture spaces. Traditional analytical method and Newton-Raphson method usually cannot solve this problem well due to lack of generality or latent divergence. To address this issue, this study employs recent advances in deep learning to propose a novel physics-informed Newton-Raphson network (PhyNRnet) to rapidly and accurately solve this forward kinematics problem for general parallel manipulators. The main strategy of PhyNRnet is to combine the Newton-Raphson method with the neural network, which helps to significantly improve the accuracy and convergence speed of the model. In addition, to facilitate the network optimization, semi-autoregression, hard imposition of initial/boundary conditions (I/BCs), batch normalization, etc. are developed and applied in PhyNRnet. Unlike previous data-driven paradigms, PhyNRnet adopts the physics-informed loss functions to guide the network optimization, which gives the model clear physical meaning and helps improve generalization ability. Finally, the performance of PhyNRnet is verified by three parallel manipulator paradigms with large postures, where the Newton-Raphson method has generally diverged. Besides, the efficiency analysis shows that PhyNRnet consumes only a small amount of time at each time step, which meets the real-time requirements.
{"title":"PhyNRnet: Physics-informed Newton-Raphson Network for Forward Kinematics Solution of Parallel Manipulators","authors":"Chongjian He, Wei Guo, Yanxia Zhu, Lizhong Jiang","doi":"10.1115/1.4063977","DOIUrl":"https://doi.org/10.1115/1.4063977","url":null,"abstract":"Abstract Despite significant performance advantages, the intractable forward kinematics have always restricted the application of parallel manipulators to small posture spaces. Traditional analytical method and Newton-Raphson method usually cannot solve this problem well due to lack of generality or latent divergence. To address this issue, this study employs recent advances in deep learning to propose a novel physics-informed Newton-Raphson network (PhyNRnet) to rapidly and accurately solve this forward kinematics problem for general parallel manipulators. The main strategy of PhyNRnet is to combine the Newton-Raphson method with the neural network, which helps to significantly improve the accuracy and convergence speed of the model. In addition, to facilitate the network optimization, semi-autoregression, hard imposition of initial/boundary conditions (I/BCs), batch normalization, etc. are developed and applied in PhyNRnet. Unlike previous data-driven paradigms, PhyNRnet adopts the physics-informed loss functions to guide the network optimization, which gives the model clear physical meaning and helps improve generalization ability. Finally, the performance of PhyNRnet is verified by three parallel manipulator paradigms with large postures, where the Newton-Raphson method has generally diverged. Besides, the efficiency analysis shows that PhyNRnet consumes only a small amount of time at each time step, which meets the real-time requirements.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"7 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thanh-Vu Phan, Van Men Truong, Huy-Tuan Pham, Van-Khien Nguyen
Abstract This study addressed the development of a novel compliant constant-torque mechanism (CCTM) that utilizes Bezier curved beams to provide a large stroke in the constant-torque operating range. Previous CCTMs are limited by their working stroke, which reduces their applicability. The proposed mechanism is based on an analytical model using the chained beam-constraint model (CBCM), which captures the kinetostatic behavior of flexible segments. A genetic algorithm based on the CBCM was used to obtain the optimal structure, which was then verified through finite element analysis and experimental results. The results show that the proposed CCTM provides good flatness with a deviation of 3.7% and a large stroke of 80° in the constant-torque working range, while maintaining compactness. This novel CCTM has the potential to provide a simple and effective solution for torque regulators in various applications
{"title":"Design of a Novel Large-Stroke Compliant Constant-Torque Mechanism Based on Chained Beam-Constraint Model","authors":"Thanh-Vu Phan, Van Men Truong, Huy-Tuan Pham, Van-Khien Nguyen","doi":"10.1115/1.4063980","DOIUrl":"https://doi.org/10.1115/1.4063980","url":null,"abstract":"Abstract This study addressed the development of a novel compliant constant-torque mechanism (CCTM) that utilizes Bezier curved beams to provide a large stroke in the constant-torque operating range. Previous CCTMs are limited by their working stroke, which reduces their applicability. The proposed mechanism is based on an analytical model using the chained beam-constraint model (CBCM), which captures the kinetostatic behavior of flexible segments. A genetic algorithm based on the CBCM was used to obtain the optimal structure, which was then verified through finite element analysis and experimental results. The results show that the proposed CCTM provides good flatness with a deviation of 3.7% and a large stroke of 80° in the constant-torque working range, while maintaining compactness. This novel CCTM has the potential to provide a simple and effective solution for torque regulators in various applications","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"15 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingting Su, Quan Yuan, Xu Liang, Yuchen Yan, Haojian Zhang, Xianjie Jian, Guangping He, Quan-Liang Zhao
Abstract In recent years, parallel robots have become a hot research topic in trauma fracture treatment because of their high precision, high load capacity, and compact structure. However, compared with serial robots, parallel robots have disadvantages like smaller workspaces and more complex dexterity. In this paper, a novel redundant parallel mechanism (RPM) for long bone fracture reduction is proposed based on Stewart parallel mechanism (SPM). 6 kinematically redundant DOFs (Degrees of freedom) are added to the RPM. First, the kinematics of the RPM is established, and its workspace is calculated. The analysis results indicate that the position workspace of the RPM is about 19 times larger than that of the SPM. The RPM has a similar range of torsion angles as the SPM, but a more extensive range of tilt angles than the SPM. Second, the singularities of the two parallel mechanisms are compared based on the dimensionally homogeneous Jacobian matrix. The results show that the dexterity of the RPM is much better than the SPM. Third, a multi-parameter multi-objective optimization method is proposed to optimize the geometry parameters of the RPM. The statics of the RPM is analyzed by finite element analysis. To further expand the performance of the RPM, the unfixed RPM (URPM) is proposed. The analysis results show that the URPM is superior to the RPM in terms of workspace and dexterity. Finally, experiments are conducted to verify the effectiveness of the proposed methods in this paper.
{"title":"Design and Analysis of a Novel Redundant Parallel Mechanism for Long Bone Fracture Reduction","authors":"Tingting Su, Quan Yuan, Xu Liang, Yuchen Yan, Haojian Zhang, Xianjie Jian, Guangping He, Quan-Liang Zhao","doi":"10.1115/1.4063981","DOIUrl":"https://doi.org/10.1115/1.4063981","url":null,"abstract":"Abstract In recent years, parallel robots have become a hot research topic in trauma fracture treatment because of their high precision, high load capacity, and compact structure. However, compared with serial robots, parallel robots have disadvantages like smaller workspaces and more complex dexterity. In this paper, a novel redundant parallel mechanism (RPM) for long bone fracture reduction is proposed based on Stewart parallel mechanism (SPM). 6 kinematically redundant DOFs (Degrees of freedom) are added to the RPM. First, the kinematics of the RPM is established, and its workspace is calculated. The analysis results indicate that the position workspace of the RPM is about 19 times larger than that of the SPM. The RPM has a similar range of torsion angles as the SPM, but a more extensive range of tilt angles than the SPM. Second, the singularities of the two parallel mechanisms are compared based on the dimensionally homogeneous Jacobian matrix. The results show that the dexterity of the RPM is much better than the SPM. Third, a multi-parameter multi-objective optimization method is proposed to optimize the geometry parameters of the RPM. The statics of the RPM is analyzed by finite element analysis. To further expand the performance of the RPM, the unfixed RPM (URPM) is proposed. The analysis results show that the URPM is superior to the RPM in terms of workspace and dexterity. Finally, experiments are conducted to verify the effectiveness of the proposed methods in this paper.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"36 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhefeng Huang, Hussain Alkhars, Anthony Gunderman, Dimitri Sigounas, Kevin Cleary, Yue Chen
Abstract Purpose: The purpose of this paper is to investigate the geometrical design and path planning of Concentric tube robots (CTR) for intracerebral hemorrhage (ICH) evacuation, with a focus on minimizing the risk of damaging white matter tracts and cerebral arteries. Methods: To achieve our objective, we propose a parametrization method describing a general class of CTR geometric designs. We present mathematical models that describe the CTR design constraints and provide the calculation of a path risk value. We then use a genetic algorithm to determine the optimal tube geometry for targeting within the brain. Results: Our results show that a multi-tube CTR design can significantly reduce the risk of damaging critical brain structures compared to the conventional straight tube design. However, there is no significant relationship between the path risk value and the number and shape of the additional inner curved tubes. Conclusion: Considering the challenges of CTR hardware design, fabrication, and control, we conclude that the most practical geometry for a CTR path in ICH treatment is a straight outer tube followed by a planar curved inner tube. These findings have important implications for the development of safe and effective CTRs for ICH evacuation by enabling dexterous manipulation to minimize damage to critical brain structures.
{"title":"Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal","authors":"Zhefeng Huang, Hussain Alkhars, Anthony Gunderman, Dimitri Sigounas, Kevin Cleary, Yue Chen","doi":"10.1115/1.4063979","DOIUrl":"https://doi.org/10.1115/1.4063979","url":null,"abstract":"Abstract Purpose: The purpose of this paper is to investigate the geometrical design and path planning of Concentric tube robots (CTR) for intracerebral hemorrhage (ICH) evacuation, with a focus on minimizing the risk of damaging white matter tracts and cerebral arteries. Methods: To achieve our objective, we propose a parametrization method describing a general class of CTR geometric designs. We present mathematical models that describe the CTR design constraints and provide the calculation of a path risk value. We then use a genetic algorithm to determine the optimal tube geometry for targeting within the brain. Results: Our results show that a multi-tube CTR design can significantly reduce the risk of damaging critical brain structures compared to the conventional straight tube design. However, there is no significant relationship between the path risk value and the number and shape of the additional inner curved tubes. Conclusion: Considering the challenges of CTR hardware design, fabrication, and control, we conclude that the most practical geometry for a CTR path in ICH treatment is a straight outer tube followed by a planar curved inner tube. These findings have important implications for the development of safe and effective CTRs for ICH evacuation by enabling dexterous manipulation to minimize damage to critical brain structures.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"36 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract A tripod-scissor unit, unlike planar scissor pairs, consists of three rods connected at an intermediate joint thus forming a spatially transformable unit. Geometrically, a tripod-scissor unit is axisymmetric but does not possess reflectional symmetry. This paper proposes a mirrored assembly approach wherein two units are connected symmetrically about the mirroring plane. The assembly approach results in different geometric conditions and motion characteristics. Two types of four-unit deployable blocks were made – one out of straight and the other of angulated members. Design equations were developed to study the influence of member geometry and assembly method on the structure's form and transformation. Digital models helped to validate the analytical results and to simulate the motion of the structures. More sample structures are presented to demonstrate the assembly of multiple units using the mirrored approach. The analysis shows that the mirrored assembly tripod-scissors result in a new generation of mechanisms with different transformation characteristics. Closed polyhedral forms with a high expansion ratio are possible.
{"title":"A Mirrored Approach to Generate Spatial Deployable Assemblies using Tripod-scissor Units","authors":"Yuan Liao, Sudarshan Krishnan","doi":"10.1115/1.4063872","DOIUrl":"https://doi.org/10.1115/1.4063872","url":null,"abstract":"Abstract A tripod-scissor unit, unlike planar scissor pairs, consists of three rods connected at an intermediate joint thus forming a spatially transformable unit. Geometrically, a tripod-scissor unit is axisymmetric but does not possess reflectional symmetry. This paper proposes a mirrored assembly approach wherein two units are connected symmetrically about the mirroring plane. The assembly approach results in different geometric conditions and motion characteristics. Two types of four-unit deployable blocks were made – one out of straight and the other of angulated members. Design equations were developed to study the influence of member geometry and assembly method on the structure's form and transformation. Digital models helped to validate the analytical results and to simulate the motion of the structures. More sample structures are presented to demonstrate the assembly of multiple units using the mirrored approach. The analysis shows that the mirrored assembly tripod-scissors result in a new generation of mechanisms with different transformation characteristics. Closed polyhedral forms with a high expansion ratio are possible.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135570109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Wen, Junfeng Hu, Jun Zhang, Xian Li, Sheng Kang, Ning Zhang
Abstract In the narrow and irregular environment of the ruins, the existing rescue robots are struggling to achieve their performance. Inspired by the process of termite predation by giant anteaters, we propose a soft rescue robot that utilizes motion propulsion similar to gear meshing and the adaptability of a continuum manipulator. The robot, consisting of a soft continuum manipulator and driving equipment, has the characteristics of fast propulsion and adaptation to unstructured environments. The driving device can give the manipulator a maximum speed of 14.67 cm/s and a propulsive force of 19.20 N. With the flexibility of the soft robot, the soft manipulator can adapt to the environment under propulsion to pass obstacles. The experiments of self-adaptability performance tests under different conditions show that the robot can pass over obstacles with an angle of up to 80.57 deg between its axis and the contact surface. In the actual ruin experiment, the robot could penetrate 1.3 m deep in the narrow passage formed by the bricks with the mode. The experiment indicates the presented rescue robot design's feasibility. Our work could contribute to the research on the interaction of soft robots with their environment.
{"title":"Design, performance analysis, and experiments of a soft robot for rescue","authors":"Tao Wen, Junfeng Hu, Jun Zhang, Xian Li, Sheng Kang, Ning Zhang","doi":"10.1115/1.4063669","DOIUrl":"https://doi.org/10.1115/1.4063669","url":null,"abstract":"Abstract In the narrow and irregular environment of the ruins, the existing rescue robots are struggling to achieve their performance. Inspired by the process of termite predation by giant anteaters, we propose a soft rescue robot that utilizes motion propulsion similar to gear meshing and the adaptability of a continuum manipulator. The robot, consisting of a soft continuum manipulator and driving equipment, has the characteristics of fast propulsion and adaptation to unstructured environments. The driving device can give the manipulator a maximum speed of 14.67 cm/s and a propulsive force of 19.20 N. With the flexibility of the soft robot, the soft manipulator can adapt to the environment under propulsion to pass obstacles. The experiments of self-adaptability performance tests under different conditions show that the robot can pass over obstacles with an angle of up to 80.57 deg between its axis and the contact surface. In the actual ruin experiment, the robot could penetrate 1.3 m deep in the narrow passage formed by the bricks with the mode. The experiment indicates the presented rescue robot design's feasibility. Our work could contribute to the research on the interaction of soft robots with their environment.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"73 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135514306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaofei Liu, Bo Wan, Yu Liu, Ran Chen, Jiantao Yao, Yongsheng Zhao
Abstract A new symmetric parallel mechanism 6RPS with multi-redundant actuations is proposed in this paper, which possesses two rotational and one translational degrees of freedom. Motion and constraint screw systems of this mechanism are established and then character of the freedom is analyzed. Transmission performance indexes are established, and dimension optimization is operated by considering the distribution of transmission performance. Whole quality posture space and performance distribution are analyzed with optimal dimension. Motion interference condition of the mechanism is studied, and accessible posture space are analyzed by combining joint space restriction. A comprehensive performance comparison with a counterpart configuration is exhibited. Research results of this paper are of reference significance for both the research of parallel mechanism with two rotational and one translational degrees of freedom, and the application of mechanism 6RPS.
{"title":"Kinematic Performance Analysis and Dimensional Optimization of New Symmetric Parallel Mechanism 6RPS with Multi-Redundant Actuations","authors":"Xiaofei Liu, Bo Wan, Yu Liu, Ran Chen, Jiantao Yao, Yongsheng Zhao","doi":"10.1115/1.4063873","DOIUrl":"https://doi.org/10.1115/1.4063873","url":null,"abstract":"Abstract A new symmetric parallel mechanism 6RPS with multi-redundant actuations is proposed in this paper, which possesses two rotational and one translational degrees of freedom. Motion and constraint screw systems of this mechanism are established and then character of the freedom is analyzed. Transmission performance indexes are established, and dimension optimization is operated by considering the distribution of transmission performance. Whole quality posture space and performance distribution are analyzed with optimal dimension. Motion interference condition of the mechanism is studied, and accessible posture space are analyzed by combining joint space restriction. A comprehensive performance comparison with a counterpart configuration is exhibited. Research results of this paper are of reference significance for both the research of parallel mechanism with two rotational and one translational degrees of freedom, and the application of mechanism 6RPS.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135569248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}