F. Brinkmann, W. Kreuzer, J. Thomsen, Sergejs Dombrovskis, K. Pollack, S. Weinzierl, P. Majdak
{"title":"Recent Advances in an Open Software for Numerical HRTF Calculation","authors":"F. Brinkmann, W. Kreuzer, J. Thomsen, Sergejs Dombrovskis, K. Pollack, S. Weinzierl, P. Majdak","doi":"10.17743/jaes.2022.0078","DOIUrl":null,"url":null,"abstract":"Mesh2HRTF 1.x is an open-source and fully scriptable end-to-end pipeline for the numerical calculation of head-related transfer functions (HRTFs). The calculations are based on 3D meshes of listener’s body parts such as the head, pinna, and torso. The numerical core of Mesh2HRTF is written in C++ and employs the boundary-element method for solving the Helmholtz equation. It is accelerated by a multilevel fast multipole method and can easily be parallelized to further speed up the computations. The recently refactored framework of Mesh2HRTF 1.x contains tools for preparing the meshes as well as specific post-processing and inspection of the calculated HRTFs. The resulting HRTFs are saved in the spatially oriented format for acoustics being directly applicable in virtual and augmented reality applications and psychoacoustic research. The Mesh2HRTF 1.x code is automatically tested to assure high quality and reliability. A comprehensive online documentation enables easy access for users without in-depth knowledge of acoustic simulations.","PeriodicalId":50008,"journal":{"name":"Journal of the Audio Engineering Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Audio Engineering Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0078","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 2
Abstract
Mesh2HRTF 1.x is an open-source and fully scriptable end-to-end pipeline for the numerical calculation of head-related transfer functions (HRTFs). The calculations are based on 3D meshes of listener’s body parts such as the head, pinna, and torso. The numerical core of Mesh2HRTF is written in C++ and employs the boundary-element method for solving the Helmholtz equation. It is accelerated by a multilevel fast multipole method and can easily be parallelized to further speed up the computations. The recently refactored framework of Mesh2HRTF 1.x contains tools for preparing the meshes as well as specific post-processing and inspection of the calculated HRTFs. The resulting HRTFs are saved in the spatially oriented format for acoustics being directly applicable in virtual and augmented reality applications and psychoacoustic research. The Mesh2HRTF 1.x code is automatically tested to assure high quality and reliability. A comprehensive online documentation enables easy access for users without in-depth knowledge of acoustic simulations.
期刊介绍:
The Journal of the Audio Engineering Society — the official publication of the AES — is the only peer-reviewed journal devoted exclusively to audio technology. Published 10 times each year, it is available to all AES members and subscribers.
The Journal contains state-of-the-art technical papers and engineering reports; feature articles covering timely topics; pre and post reports of AES conventions and other society activities; news from AES sections around the world; Standards and Education Committee work; membership news, patents, new products, and newsworthy developments in the field of audio.