Application of machine learning in material corrosion research

IF 2.7 4区 材料科学 Q3 ELECTROCHEMISTRY Corrosion Reviews Pub Date : 2023-04-17 DOI:10.1515/corrrev-2022-0089
Shuaijie Ma, Yanxia Du, Shasha Wang, Yanjing Su
{"title":"Application of machine learning in material corrosion research","authors":"Shuaijie Ma, Yanxia Du, Shasha Wang, Yanjing Su","doi":"10.1515/corrrev-2022-0089","DOIUrl":null,"url":null,"abstract":"Abstract The application of machine learning (ML) to corrosion research has become an important trend in corrosion science in recent years. In this paper, the feature extraction method for corrosion data and the ML algorithms commonly used (including artificial neural networks, support vector machines, ensemble learning and other widely used algorithms) in corrosion field is introduced. Then, the characteristics of different algorithms and their application scenarios in the corrosion prediction are summarized. Finally, the development trend of ML in material corrosion field is prospected.","PeriodicalId":10721,"journal":{"name":"Corrosion Reviews","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/corrrev-2022-0089","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The application of machine learning (ML) to corrosion research has become an important trend in corrosion science in recent years. In this paper, the feature extraction method for corrosion data and the ML algorithms commonly used (including artificial neural networks, support vector machines, ensemble learning and other widely used algorithms) in corrosion field is introduced. Then, the characteristics of different algorithms and their application scenarios in the corrosion prediction are summarized. Finally, the development trend of ML in material corrosion field is prospected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习在材料腐蚀研究中的应用
摘要近年来,机器学习在腐蚀研究中的应用已成为腐蚀科学的一个重要趋势。本文介绍了腐蚀数据的特征提取方法以及腐蚀领域常用的ML算法(包括人工神经网络、支持向量机、集成学习等广泛使用的算法)。然后,总结了不同算法的特点及其在腐蚀预测中的应用场景。最后,展望了机器学习在材料腐蚀领域的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Corrosion Reviews
Corrosion Reviews 工程技术-材料科学:膜
CiteScore
5.20
自引率
3.10%
发文量
44
审稿时长
4.5 months
期刊介绍: Corrosion Reviews is an international bimonthly journal devoted to critical reviews and, to a lesser extent, outstanding original articles that are key to advancing the understanding and application of corrosion science and engineering in the service of society. Papers may be of a theoretical, experimental or practical nature, provided that they make a significant contribution to knowledge in the field.
期刊最新文献
Investigation of corrosion inhibition and adsorption properties of quinoxaline derivatives on metal surfaces through DFT and Monte Carlo simulations Phytochemicals as eco-friendly corrosion inhibitors for mild steel in sulfuric acid solutions: a review Corrosion mechanism of K411 superalloy in sulfur-containing environment: sulfidation promoting internal nitridation The impact of loading rate on chloride induced stress corrosion cracking of 304L stainless steel On relating quasi-static load threshold K1scc to K1c
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1