Yongliang Yang, Na Luo, Shiyun Lin, Huan Yao and Yaqi Cai*,
{"title":"Cyano Substituent on the Olefin Linkage: Promoting Rather than Inhibiting the Performance of Covalent Organic Frameworks","authors":"Yongliang Yang, Na Luo, Shiyun Lin, Huan Yao and Yaqi Cai*, ","doi":"10.1021/acscatal.2c02908","DOIUrl":null,"url":null,"abstract":"<p >It is generally believed that the electron-withdrawing cyano group in the olefin linkage would inhibit the stability and π-conjugation of covalent organic frameworks (COFs), which raises concerns about their optoelectronic properties. However, the structure–activity relationship between the structure of olefin linkages and properties of COFs is still inconclusive. In this work, imine-, vinylene-, and acrylonitrile-linked COFs with identical triphenyltriazine building blocks were designed and synthesized. Our work demonstrated that construction of acrylonitrile linkages not only enhanced the chemical stability and photostability but also led to remarkable optoelectronic properties with a record fluorescence quantum yield of 35.37% in the solid state. Further, the acrylonitrile linkage endows TTAN-COF/Pt NPs with superior and durable photocatalytic activity in both the hydrogen evolution reaction (11.94 mmol g<sup>–1</sup> h<sup>–1</sup>; BET surface area, 739.28 m<sup>2</sup> g<sup>–1</sup>) and aerobic oxidation reaction. This work demonstrates that the acrylonitrile linkage can significantly enhance the optoelectronic properties and photocatalytic activities of COFs compared with the highly π-conjugated vinylene linkage, providing a valuable reference for the design of optoelectronic functional materials.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"12 17","pages":"10718–10726"},"PeriodicalIF":11.3000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.2c02908","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 10
Abstract
It is generally believed that the electron-withdrawing cyano group in the olefin linkage would inhibit the stability and π-conjugation of covalent organic frameworks (COFs), which raises concerns about their optoelectronic properties. However, the structure–activity relationship between the structure of olefin linkages and properties of COFs is still inconclusive. In this work, imine-, vinylene-, and acrylonitrile-linked COFs with identical triphenyltriazine building blocks were designed and synthesized. Our work demonstrated that construction of acrylonitrile linkages not only enhanced the chemical stability and photostability but also led to remarkable optoelectronic properties with a record fluorescence quantum yield of 35.37% in the solid state. Further, the acrylonitrile linkage endows TTAN-COF/Pt NPs with superior and durable photocatalytic activity in both the hydrogen evolution reaction (11.94 mmol g–1 h–1; BET surface area, 739.28 m2 g–1) and aerobic oxidation reaction. This work demonstrates that the acrylonitrile linkage can significantly enhance the optoelectronic properties and photocatalytic activities of COFs compared with the highly π-conjugated vinylene linkage, providing a valuable reference for the design of optoelectronic functional materials.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.