Exploring the temporal variability of the factors affecting driver injury severity by body region employing a hybrid econometric approach

IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Analytic Methods in Accident Research Pub Date : 2023-03-01 DOI:10.1016/j.amar.2022.100246
Ahmed Kabli , Tanmoy Bhowmik , Naveen Eluru
{"title":"Exploring the temporal variability of the factors affecting driver injury severity by body region employing a hybrid econometric approach","authors":"Ahmed Kabli ,&nbsp;Tanmoy Bhowmik ,&nbsp;Naveen Eluru","doi":"10.1016/j.amar.2022.100246","DOIUrl":null,"url":null,"abstract":"<div><p>The current study contributes to safety literature by incorporating the influence of temporal factors (observed and unobserved) within a multivariate model system for medical professional generated body region specific injury severity score. For this purpose, we adopt a hybrid econometric modeling approach that accommodates for the unobserved factors using two mechanisms. First, we parameterize unobserved temporal factor variation through the customization of the variance by time cohort (heteroscedasticity). Second, the common unobserved factors affecting severity across various body regions is accommodated through traditional random parameter consideration process. The proposed model system is estimated using data drawn from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database for the time cohorts 2003, 2006, 2009, 2012, and 2015. For the current analysis, we consider 6-point Abbreviated Injury Scale (AIS) for eight body regions (head, face, neck, abdomen, thorax, spine, lower extremity, and upper extremity). The proposed model system offers interesting insights on body region severity evolution over time. The model estimation is augmented with post-estimation exercises including hold-out sample validation analysis, illustrative policy analysis and extensive elasticity effect computation.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"37 ","pages":"Article 100246"},"PeriodicalIF":12.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665722000355","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 2

Abstract

The current study contributes to safety literature by incorporating the influence of temporal factors (observed and unobserved) within a multivariate model system for medical professional generated body region specific injury severity score. For this purpose, we adopt a hybrid econometric modeling approach that accommodates for the unobserved factors using two mechanisms. First, we parameterize unobserved temporal factor variation through the customization of the variance by time cohort (heteroscedasticity). Second, the common unobserved factors affecting severity across various body regions is accommodated through traditional random parameter consideration process. The proposed model system is estimated using data drawn from the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database for the time cohorts 2003, 2006, 2009, 2012, and 2015. For the current analysis, we consider 6-point Abbreviated Injury Scale (AIS) for eight body regions (head, face, neck, abdomen, thorax, spine, lower extremity, and upper extremity). The proposed model system offers interesting insights on body region severity evolution over time. The model estimation is augmented with post-estimation exercises including hold-out sample validation analysis, illustrative policy analysis and extensive elasticity effect computation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合计量经济学方法的驾驶员损伤严重程度影响因素的时空变异研究
目前的研究通过将时间因素(观察到的和未观察到的)的影响纳入医疗专业人员产生的身体区域特异性损伤严重程度评分的多变量模型系统中,为安全性文献做出了贡献。为此,我们采用混合计量经济建模方法,使用两种机制来适应未观察到的因素。首先,我们通过时间队列自定义方差(异方差)来参数化未观测到的时间因子变化。其次,通过传统的随机参数考虑过程,容纳了影响不同身体区域严重性的常见未观察到的因素。所提出的模型系统是使用国家汽车抽样系统-耐撞数据系统(NASS-CDS)数据库中2003年、2006年、2009年、2012年和2015年的数据进行估计的。对于目前的分析,我们考虑6点简易损伤量表(AIS),用于八个身体区域(头部、面部、颈部、腹部、胸部、脊柱、下肢和上肢)。提出的模型系统提供了关于身体区域严重性随时间演变的有趣见解。模型估计与后估计练习增强,包括保留样本验证分析,说明性政策分析和广泛的弹性效应计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.10
自引率
34.10%
发文量
35
审稿时长
24 days
期刊介绍: Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.
期刊最新文献
Econometric approaches to examine the onset and duration of temporal variations in pedestrian and bicyclist injury severity analysis Determinants influencing alcohol-related two-vehicle crash severity: A multivariate Bayesian hierarchical random parameters correlated outcomes logit model Effects of sample size on pedestrian crash risk estimation from traffic conflicts using extreme value models Editorial Board A cross-comparison of different extreme value modeling techniques for traffic conflict-based crash risk estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1