{"title":"Emulsification of castor oil using poly (N-vinyl-2-pyrrolidone) for functional finishing of cotton fabric","authors":"Hesham M Fahmy, A. A. Almetwally","doi":"10.1177/15589250231174613","DOIUrl":null,"url":null,"abstract":"Castor oil (CAO)/poly (N-vinyl-2-pyrrolidone) (PVP) hybrid was synthesized at different reaction conditions including PVP/CAO weight ratio, temperature, and time. The results indicated that the optimum conditions to synthesis that hybrid is reacting of PVP having a molecular weight of 40,000 Da with CAO at a weight ratio of 30% and temperature of 150°C for 60 min. The synthesized hybrid was characterized via FTIR. Emulsification of such hybrid in water results in a white stable emulsion. The TEM analysis proved that the prepared emulsion of a particle size ranges from 320 to 370 nm. The technical feasibility to apply the produced emulsion for functional finishing of cotton fabric was studied. The results obtained indicated that treating cotton fabric with easy care finishing bath containing the synthesized emulsion results in enhancement in nitrogen content, tensile strength, whiteness index, stiffness, and antibacterial activities along with a decreasing in resiliency, wettability, and surface roughness properties of treated fabric, compared to the control sample. Moreover, incorporation of zinc oxide nano-particles (ZnO-NPs) or dihydroxybenzophenone (DHBP) in the above mentioned finishing bath enhances the functional properties of the finished fabric. Furthermore, dyeing fabric samples with different reactive and direct dyes followed by finishing using the aforementioned finishing bath, in absence of ZnO-NPs and DHBP, gives rise to an enhancement in the color strength of such samples compared to the dyed samples. The fastness to washing and perspiration of only the direct dye dyed/finished sample was improved. Almost all the dyed/finished samples exhibited an improvement in their fastness to the wet rubbing and alkaline perspiration along with a reduction in fastness to light. In addition, the SEM, as well as EDX analysis of treated fabric, was investigated.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250231174613","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 1
Abstract
Castor oil (CAO)/poly (N-vinyl-2-pyrrolidone) (PVP) hybrid was synthesized at different reaction conditions including PVP/CAO weight ratio, temperature, and time. The results indicated that the optimum conditions to synthesis that hybrid is reacting of PVP having a molecular weight of 40,000 Da with CAO at a weight ratio of 30% and temperature of 150°C for 60 min. The synthesized hybrid was characterized via FTIR. Emulsification of such hybrid in water results in a white stable emulsion. The TEM analysis proved that the prepared emulsion of a particle size ranges from 320 to 370 nm. The technical feasibility to apply the produced emulsion for functional finishing of cotton fabric was studied. The results obtained indicated that treating cotton fabric with easy care finishing bath containing the synthesized emulsion results in enhancement in nitrogen content, tensile strength, whiteness index, stiffness, and antibacterial activities along with a decreasing in resiliency, wettability, and surface roughness properties of treated fabric, compared to the control sample. Moreover, incorporation of zinc oxide nano-particles (ZnO-NPs) or dihydroxybenzophenone (DHBP) in the above mentioned finishing bath enhances the functional properties of the finished fabric. Furthermore, dyeing fabric samples with different reactive and direct dyes followed by finishing using the aforementioned finishing bath, in absence of ZnO-NPs and DHBP, gives rise to an enhancement in the color strength of such samples compared to the dyed samples. The fastness to washing and perspiration of only the direct dye dyed/finished sample was improved. Almost all the dyed/finished samples exhibited an improvement in their fastness to the wet rubbing and alkaline perspiration along with a reduction in fastness to light. In addition, the SEM, as well as EDX analysis of treated fabric, was investigated.
期刊介绍:
Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.