A classification scheme for static origin–destination data visualizations

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Geographical Information Science Pub Date : 2023-07-18 DOI:10.1080/13658816.2023.2234001
Y. Gu, M. Kraak, Y. Engelhardt, Franz-Benjamin Mocnik
{"title":"A classification scheme for static origin–destination data visualizations","authors":"Y. Gu, M. Kraak, Y. Engelhardt, Franz-Benjamin Mocnik","doi":"10.1080/13658816.2023.2234001","DOIUrl":null,"url":null,"abstract":"Abstract Origin–destination (OD) visualizations can help to understand movement data. Unfortunately, they are often cluttered due to the quadratic growth of the data and complex depictions of the multiple dimensions in the data. Many domain experts have designed visualizations to reduce visual complexity and display multiple data variables. However, OD visualizations have not been well classified, which makes it hard to employ such methods for reducing the visual complexity systematically. In this article, we propose a novel classification scheme for static OD visualizations that considers five aspects: the granularity of flows, the dimensionality in and of the display space, the semantics of the display space, the representation of nodes and flows, and the ways of relating two visualizations. We evaluate the proposed classification scheme using published visualization examples and show that it is effective and expressive.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1970 - 1997"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2234001","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Origin–destination (OD) visualizations can help to understand movement data. Unfortunately, they are often cluttered due to the quadratic growth of the data and complex depictions of the multiple dimensions in the data. Many domain experts have designed visualizations to reduce visual complexity and display multiple data variables. However, OD visualizations have not been well classified, which makes it hard to employ such methods for reducing the visual complexity systematically. In this article, we propose a novel classification scheme for static OD visualizations that considers five aspects: the granularity of flows, the dimensionality in and of the display space, the semantics of the display space, the representation of nodes and flows, and the ways of relating two visualizations. We evaluate the proposed classification scheme using published visualization examples and show that it is effective and expressive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静态起点-终点数据可视化的分类方案
摘要来源-目的地(OD)可视化可以帮助理解运动数据。不幸的是,由于数据的二次增长和数据中多个维度的复杂描述,它们往往是混乱的。许多领域专家已经设计了可视化,以降低视觉复杂性并显示多个数据变量。然而,OD可视化并没有得到很好的分类,这使得很难采用这样的方法来系统地降低视觉复杂性。在本文中,我们提出了一种新的静态OD可视化分类方案,该方案考虑了五个方面:流的粒度、显示空间中和显示空间的维度、显示空间的语义、节点和流的表示以及将两种可视化联系起来的方法。我们使用已发表的可视化示例对所提出的分类方案进行了评估,并证明了它的有效性和表达性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
期刊最新文献
GPU-accelerated parallel all-pair shortest path routing within stochastic road networks Collective flow-evolutionary patterns reveal the mesoscopic structure between snapshots of spatial network Geospatial foundation models for image analysis: evaluating and enhancing NASA-IBM Prithvi’s domain adaptability Translating street view imagery to correct perspectives to enhance bikeability and walkability studies A multi-view ensemble machine learning approach for 3D modeling using geological and geophysical data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1