Y. Gu, M. Kraak, Y. Engelhardt, Franz-Benjamin Mocnik
{"title":"A classification scheme for static origin–destination data visualizations","authors":"Y. Gu, M. Kraak, Y. Engelhardt, Franz-Benjamin Mocnik","doi":"10.1080/13658816.2023.2234001","DOIUrl":null,"url":null,"abstract":"Abstract Origin–destination (OD) visualizations can help to understand movement data. Unfortunately, they are often cluttered due to the quadratic growth of the data and complex depictions of the multiple dimensions in the data. Many domain experts have designed visualizations to reduce visual complexity and display multiple data variables. However, OD visualizations have not been well classified, which makes it hard to employ such methods for reducing the visual complexity systematically. In this article, we propose a novel classification scheme for static OD visualizations that considers five aspects: the granularity of flows, the dimensionality in and of the display space, the semantics of the display space, the representation of nodes and flows, and the ways of relating two visualizations. We evaluate the proposed classification scheme using published visualization examples and show that it is effective and expressive.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1970 - 1997"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2234001","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Origin–destination (OD) visualizations can help to understand movement data. Unfortunately, they are often cluttered due to the quadratic growth of the data and complex depictions of the multiple dimensions in the data. Many domain experts have designed visualizations to reduce visual complexity and display multiple data variables. However, OD visualizations have not been well classified, which makes it hard to employ such methods for reducing the visual complexity systematically. In this article, we propose a novel classification scheme for static OD visualizations that considers five aspects: the granularity of flows, the dimensionality in and of the display space, the semantics of the display space, the representation of nodes and flows, and the ways of relating two visualizations. We evaluate the proposed classification scheme using published visualization examples and show that it is effective and expressive.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.