Huikyeong Byeon, Boyun Kim, Hyejee Hwang, Minji Kim, Hyeonjin Yoo, Hyebin Song, Seoung Ho Lee and Byoung Hoon Lee*,
{"title":"Flexible Organic Photodetectors with Mechanically Robust Zinc Oxide Nanoparticle Thin Films","authors":"Huikyeong Byeon, Boyun Kim, Hyejee Hwang, Minji Kim, Hyeonjin Yoo, Hyebin Song, Seoung Ho Lee and Byoung Hoon Lee*, ","doi":"10.1021/acsami.3c00947","DOIUrl":null,"url":null,"abstract":"<p >Zinc oxide nanoparticle (ZnO-NP) thin films have been intensively used as electron transport layers (ETLs) in organic optoelectronic devices, but their moderate mechanical flexibility hinders their application to flexible electronic devices. This study reveals that the multivalent interaction between ZnO-NPs and multicharged conjugated electrolytes, such as diphenylfluorene pyridinium bromide derivative (DFPBr-6), can significantly improve the mechanical flexibility of ZnO-NP thin films. Intermixing ZnO-NPs and DFPBr-6 facilitates the coordination between bromide anions (from the DFPBr-6) and zinc cations on ZnO-NP surfaces, forming Zn<sup>2+</sup>–Br<sup>–</sup> bonds. Different from a conventional electrolyte (e.g., KBr), DFPBr-6 with six pyridinium ionic side chains holds the Br<sup>–</sup>-chelated ZnO-NPs adjacent to DFP<sup>+</sup> through Zn<sup>2+</sup>–Br<sup>–</sup>–N<sup>+</sup> bonds. Consequently, ZnO-NP:DFPBr-6 thin films exhibit improved mechanical flexibility with a critical bending radius as low as 1.5 mm under tensile bending conditions. Flexible organic photodetectors with ZnO-NP:DFPBr-6 thin films as ETLs demonstrate reliable device performances with high <i>R</i> (0.34 A/W) and <i>D</i>* (3.03 × 10<sup>12</sup> Jones) even after 1000 times repetitive bending at a bending radius of 4.0 mm, whereas devices with ZnO-NP and ZnO-NP:KBr ETLs yield >85% reduction in <i>R</i> and <i>D</i>* under the same bending condition.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"15 8","pages":"10926–10935"},"PeriodicalIF":5.4000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c00947","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2
Abstract
Zinc oxide nanoparticle (ZnO-NP) thin films have been intensively used as electron transport layers (ETLs) in organic optoelectronic devices, but their moderate mechanical flexibility hinders their application to flexible electronic devices. This study reveals that the multivalent interaction between ZnO-NPs and multicharged conjugated electrolytes, such as diphenylfluorene pyridinium bromide derivative (DFPBr-6), can significantly improve the mechanical flexibility of ZnO-NP thin films. Intermixing ZnO-NPs and DFPBr-6 facilitates the coordination between bromide anions (from the DFPBr-6) and zinc cations on ZnO-NP surfaces, forming Zn2+–Br– bonds. Different from a conventional electrolyte (e.g., KBr), DFPBr-6 with six pyridinium ionic side chains holds the Br–-chelated ZnO-NPs adjacent to DFP+ through Zn2+–Br––N+ bonds. Consequently, ZnO-NP:DFPBr-6 thin films exhibit improved mechanical flexibility with a critical bending radius as low as 1.5 mm under tensile bending conditions. Flexible organic photodetectors with ZnO-NP:DFPBr-6 thin films as ETLs demonstrate reliable device performances with high R (0.34 A/W) and D* (3.03 × 1012 Jones) even after 1000 times repetitive bending at a bending radius of 4.0 mm, whereas devices with ZnO-NP and ZnO-NP:KBr ETLs yield >85% reduction in R and D* under the same bending condition.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture