求助PDF
{"title":"Confidence Intervals for Seroprevalence","authors":"T. DiCiccio, D. Ritzwoller, Joseph P. Romano, A. Shaikh","doi":"10.1214/21-sts844","DOIUrl":null,"url":null,"abstract":"This paper concerns the construction of confidence intervals in standard seroprevalence surveys. In particular, we discuss methods for constructing confidence intervals for the proportion of individuals in a population infected with a disease using a sample of antibody test results and measurements of the test’s false positive and false negative rates. We begin by documenting erratic behavior in the coverage probabilities of standard Wald and percentile bootstrap intervals when applied to this problem. We then consider two alternative sets of intervals constructed with test inversion. The first set of intervals are approximate, using either asymptotic or bootstrap approximation to the finite-sample distribution of a chosen test statistic. We consider several choices of test statistic, including maximum likelihood estimators and generalized likelihood ratio statistics. We show with simulation that, at empirically relevant parameter values and sample sizes, the coverage probabilities for these intervals are close to their nominal level and are approximately equi-tailed. The second set of intervals are shown to contain the true parameter value with probability at least equal to the nominal level, but can be conservative in finite samples. © Institute of Mathematical Statistics, 2022","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-sts844","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4
引用
批量引用
血清流行率的置信区间
本文讨论了标准血清患病率调查中置信区间的构建。特别是,我们讨论了使用抗体测试结果样本和测试的假阳性和假阴性率的测量来构建人群中感染某种疾病的个体比例的置信区间的方法。我们首先记录应用于该问题时标准Wald和百分位自举间隔的覆盖概率中的不稳定行为。然后,我们考虑用测试反演构造的两个可选区间集。第一组区间是近似的,使用对所选检验统计量的有限样本分布的渐近或自举近似。我们考虑了几种检验统计量的选择,包括极大似然估计量和广义似然比统计量。我们通过模拟表明,在经验相关的参数值和样本量下,这些区间的覆盖概率接近其名义水平,并且近似为等尾。第二组区间包含真实参数值,其概率至少等于标称水平,但在有限样本中可以是保守的。©中国数理统计研究所,2022
本文章由计算机程序翻译,如有差异,请以英文原文为准。