{"title":"Simultaneous nitrification and autotrophic denitrification in fluidized bed reactors using pyrite and elemental sulfur as electron donors","authors":"Maria F. Carboni , Sonia Arriaga , Piet N.L. Lens","doi":"10.1016/j.wse.2022.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12–40 mg/L of <span><math><msubsup><mtext>NH</mtext><mn>4</mn><mo>+</mo></msubsup><mo>-</mo><mi>N</mi></math></span>), nitrate (35–45 mg/L of <span><math><msubsup><mtext>NO</mtext><mn>3</mn><mo>−</mo></msubsup><mtext>-</mtext><mi>N</mi></math></span>), and dissolved oxygen (DO) (0.1–1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L⸱d) when the DO concentration was in the range of 0.8–1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II–V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO<sub>4</sub>/Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>) and sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium <em>Nitrosomonas</em> sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera <em>Terrimonas</em>, <em>Ferruginibacter</em>, and <em>Denitratimonas</em> dominated the community. <em>Thiobacillus</em>, <em>Sulfurovum</em>, and <em>Trichlorobacter</em> were the most abundant genera in the sulfur reactor during the entire experiment.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":"16 2","pages":"Pages 143-153"},"PeriodicalIF":3.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237022000953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 4
Abstract
In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12–40 mg/L of ), nitrate (35–45 mg/L of ), and dissolved oxygen (DO) (0.1–1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L⸱d) when the DO concentration was in the range of 0.8–1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II–V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.
期刊介绍:
Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.