A machine-learning reduced kinetic model for H2S thermal conversion process

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2021-12-10 DOI:10.1515/cppm-2021-0044
A. Dell’Angelo, E. M. Andoglu, S. Kaytakoğlu, F. Manenti
{"title":"A machine-learning reduced kinetic model for H2S thermal conversion process","authors":"A. Dell’Angelo, E. M. Andoglu, S. Kaytakoğlu, F. Manenti","doi":"10.1515/cppm-2021-0044","DOIUrl":null,"url":null,"abstract":"Abstract H2S is becoming more and more appealing as a source for hydrogen and syngas generation. Its hydrogen production potential is studied by several research groups by means of catalytic and thermal conversions. While the characterization of catalytic processes is strictly dependent on the catalyst adopted and difficult to be generalized, the characterization of thermal processes can be brought back to wide-range validity kinetic models thanks to their homogeneous reaction environments. The present paper is aimed at providing a reduced kinetic scheme for reliable thermal conversion of H2S molecule in pyrolysis and partial oxidation thermal processes. The proposed model consists of 10 reactions and 12 molecular species. Its validation is performed by numerical comparisons with a detailed kinetic model already validated by literature/industrial data at the operating conditions of interest. The validated reduced model could be easily adopted in commercial process simulators for the flow sheeting of H2S conversion processes.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"18 1","pages":"117 - 133"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2021-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract H2S is becoming more and more appealing as a source for hydrogen and syngas generation. Its hydrogen production potential is studied by several research groups by means of catalytic and thermal conversions. While the characterization of catalytic processes is strictly dependent on the catalyst adopted and difficult to be generalized, the characterization of thermal processes can be brought back to wide-range validity kinetic models thanks to their homogeneous reaction environments. The present paper is aimed at providing a reduced kinetic scheme for reliable thermal conversion of H2S molecule in pyrolysis and partial oxidation thermal processes. The proposed model consists of 10 reactions and 12 molecular species. Its validation is performed by numerical comparisons with a detailed kinetic model already validated by literature/industrial data at the operating conditions of interest. The validated reduced model could be easily adopted in commercial process simulators for the flow sheeting of H2S conversion processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H2S热转化过程的机器学习简化动力学模型
摘要H2S作为氢气和合成气生产的来源越来越有吸引力。几个研究小组通过催化和热转化的方式研究了其制氢潜力。虽然催化过程的表征严格取决于所采用的催化剂,并且很难推广,但由于热过程的反应环境均匀,热过程的表征可以回到宽范围有效的动力学模型中。本文旨在为热解和部分氧化热过程中H2S分子的可靠热转化提供一种简化的动力学方案。所提出的模型由10个反应和12个分子物种组成。它的验证是通过与详细的动力学模型进行数值比较来进行的,该模型已经在感兴趣的操作条件下通过文献/工业数据进行了验证。经验证的简化模型可以很容易地在商业过程模拟器中用于H2S转化过程的流板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Heat transfer efficiency in gas-solid fluidized beds with flat and corrugated walls. Enhancing heat transfer in tube heat exchanger containing water/Cu nanofluid by using turbulator Enhancing heat exchanger efficiency with novel perforated cone-shaped turbulators and nanofluids: a computational study Mathematical modeling and evaluation of permeation and membrane separation performance for Fischer–Tropsch products in a hydrophilic membrane reactor Energy, exergy, economic, and environmental analysis of natural gas sweetening process using lean vapor compression: a comparison study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1