Analogue simulation with the use of artificial quantum coherent structures

Q1 Physics and Astronomy Reviews in Physics Pub Date : 2018-11-01 DOI:10.1016/j.revip.2017.11.001
A.M. Zagoskin
{"title":"Analogue simulation with the use of artificial quantum coherent structures","authors":"A.M. Zagoskin","doi":"10.1016/j.revip.2017.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>An explosive development of quantum technologies since 1999 allowed the creation of arrays of natural and artificial quantum unit elements (viz. trapped ions and superconducting qubits), which maintain certain degree of quantum coherence and allow a degree of control over their quantum state. A natural application of such structures is towards simulating quantum systems, which are too big or too complex to allow a simulation with the means of classical computers. A digital quantum simulation promises a controlled accuracy, scalability and versatility, but it imposes practically as strict requirements on the hardware as a universal quantum computation. The other approach, analogue quantum simulation, is less demanding and thus more promising in short-to-medium term. It has already provided interesting results within the current experimental means and can be used as a stopgap approach as well as the means towards the perfecting of quantum technologies. Here I review the status of the field and discuss its prospects and the role it will play in the development of digital quantum simulation, universal quantum computing and, more broadly, quantum engineering.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"3 ","pages":"Pages 1-14"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2017.11.001","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428317300229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 27

Abstract

An explosive development of quantum technologies since 1999 allowed the creation of arrays of natural and artificial quantum unit elements (viz. trapped ions and superconducting qubits), which maintain certain degree of quantum coherence and allow a degree of control over their quantum state. A natural application of such structures is towards simulating quantum systems, which are too big or too complex to allow a simulation with the means of classical computers. A digital quantum simulation promises a controlled accuracy, scalability and versatility, but it imposes practically as strict requirements on the hardware as a universal quantum computation. The other approach, analogue quantum simulation, is less demanding and thus more promising in short-to-medium term. It has already provided interesting results within the current experimental means and can be used as a stopgap approach as well as the means towards the perfecting of quantum technologies. Here I review the status of the field and discuss its prospects and the role it will play in the development of digital quantum simulation, universal quantum computing and, more broadly, quantum engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工量子相干结构进行模拟仿真
自1999年以来,量子技术的爆炸式发展使得自然和人工量子单位元素(即捕获离子和超导量子比特)阵列的创建成为可能,它们保持一定程度的量子相干性,并允许对其量子态进行一定程度的控制。这种结构的一个自然应用是模拟量子系统,量子系统太大或太复杂,无法用经典计算机进行模拟。数字量子模拟承诺控制精度、可扩展性和多功能性,但它实际上对硬件的要求与通用量子计算一样严格。另一种方法,模拟量子模拟,要求较低,因此在中短期内更有前途。它已经在目前的实验手段中提供了有趣的结果,可以作为一种权宜之计,也可以作为完善量子技术的手段。在这里,我回顾了该领域的现状,并讨论了它的前景及其在数字量子模拟、通用量子计算和更广泛的量子工程发展中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Physics
Reviews in Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
21.30
自引率
0.00%
发文量
8
审稿时长
98 days
期刊介绍: Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.
期刊最新文献
Second-order nonlocal shifts of scattered wave-packets: What can be measured by Goos–Hänchen and Imbert–Fedorov effects? Plasmon-enhanced downshifting and downconversion: Fundamentals and applications in photovoltaics Localization in quantum field theory Deep generative models for detector signature simulation: A taxonomic review Magnetism on frustrated magnet system of Nd2B2O7 (B = Ru, Ir, Hf, Pb, Mo, and Zr): A systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1