J. Betancourt, P. Castillo, P. García, V. Balaguer, R. Lozano
{"title":"Robust bounded control scheme for quadrotor vehicles under high dynamic disturbances","authors":"J. Betancourt, P. Castillo, P. García, V. Balaguer, R. Lozano","doi":"10.1007/s10514-023-10124-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an optimal bounded robust control algorithm for secure autonomous navigation in quadcopter vehicles is proposed. The controller is developed combining two parts; one dedicated to stabilize the closed-loop system and the second one for dealing and estimating external disturbances as well unknown nonlinearities inherent to the real system’s operations. For bounding the energy used by the system during a mission and, without losing its robustness properties, the quadratic problem formulation is used considering the actuators system constraints. The resulting optimal bounded control scheme improves considerably the stability and robustness of the closed-loop system and at the same time bounds the motor control inputs. The controller is validated in real-time flights and in unconventional conditions for high wind-gusts and Loss of Effectiveness in two rotors. The experimental results demonstrate the good performance of the proposed controller in both scenarios.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 8","pages":"1245 - 1254"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10124-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an optimal bounded robust control algorithm for secure autonomous navigation in quadcopter vehicles is proposed. The controller is developed combining two parts; one dedicated to stabilize the closed-loop system and the second one for dealing and estimating external disturbances as well unknown nonlinearities inherent to the real system’s operations. For bounding the energy used by the system during a mission and, without losing its robustness properties, the quadratic problem formulation is used considering the actuators system constraints. The resulting optimal bounded control scheme improves considerably the stability and robustness of the closed-loop system and at the same time bounds the motor control inputs. The controller is validated in real-time flights and in unconventional conditions for high wind-gusts and Loss of Effectiveness in two rotors. The experimental results demonstrate the good performance of the proposed controller in both scenarios.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.