J. Huck, J. Whyatt, G. Davies, John Dixon, Brendan Sturgeon, Bree Hocking, C. Tredoux, N. Jarman, Dominic Bryan
{"title":"Fuzzy Bayesian inference for mapping vague and place-based regions: a case study of sectarian territory","authors":"J. Huck, J. Whyatt, G. Davies, John Dixon, Brendan Sturgeon, Bree Hocking, C. Tredoux, N. Jarman, Dominic Bryan","doi":"10.1080/13658816.2023.2229894","DOIUrl":null,"url":null,"abstract":"Abstract The problem of mapping regions with socially-derived boundaries has been a topic of discussion in the GIS literature for many years. Fuzzy approaches have frequently been suggested as solutions, but none have been adopted. This is likely due to difficulties associated with determining suitable membership functions, which are often as arbitrary as the crisp boundaries that they seek to replace. This paper presents a novel approach to fuzzy geographical modelling that replaces the membership function with a possibility distribution that is estimated using Bayesian inference. In this method, data from multiple sources are combined to estimate the degree to which a given location is a member of a given set and the level of uncertainty associated with that estimate. The Fuzzy Bayesian Inference approach is demonstrated through a case study in which census data are combined with perceptual and behavioural evidence to model the territory of two segregated groups (Catholics and Protestants) in Belfast, Northern Ireland, UK. This novel method provides a robust empirical basis for the use of fuzzy models in GIS, and therefore has applications for mapping a range of socially-derived and otherwise vague boundaries.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1765 - 1786"},"PeriodicalIF":4.3000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2229894","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The problem of mapping regions with socially-derived boundaries has been a topic of discussion in the GIS literature for many years. Fuzzy approaches have frequently been suggested as solutions, but none have been adopted. This is likely due to difficulties associated with determining suitable membership functions, which are often as arbitrary as the crisp boundaries that they seek to replace. This paper presents a novel approach to fuzzy geographical modelling that replaces the membership function with a possibility distribution that is estimated using Bayesian inference. In this method, data from multiple sources are combined to estimate the degree to which a given location is a member of a given set and the level of uncertainty associated with that estimate. The Fuzzy Bayesian Inference approach is demonstrated through a case study in which census data are combined with perceptual and behavioural evidence to model the territory of two segregated groups (Catholics and Protestants) in Belfast, Northern Ireland, UK. This novel method provides a robust empirical basis for the use of fuzzy models in GIS, and therefore has applications for mapping a range of socially-derived and otherwise vague boundaries.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.