Aysegul Atasoy-Zeybek, Alan Ivković, Alan Ivković, Tahsin Beyzadeoglu, A. Onal, Christopher H. Evans, G. T. Kose
{"title":"Paracrine effects of living human bone particles on the osteogenic differentiation of mesenchymal stem cells.","authors":"Aysegul Atasoy-Zeybek, Alan Ivković, Alan Ivković, Tahsin Beyzadeoglu, A. Onal, Christopher H. Evans, G. T. Kose","doi":"10.22203/eCM.v038a02","DOIUrl":null,"url":null,"abstract":"Bone autografting remains the clinical model of choice for resolving problematic fractures. The precise mechanisms through which the autograft promotes bone healing are unknown. The present study examined the hypothesis that cells within the autograft secrete osteogenic factors promoting the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Particles of human bone (\"chips\") were recovered at the time of joint replacement surgery and placed in culture. Then, conditioned media were added to cultures of human, adipose-derived MSCs under both basal and osteogenic conditions. Contrary to expectation, medium conditioned by bone chips reduced the expression of alkaline phosphatase and strongly inhibited mineral deposition by MSCs cultured in osteogenic medium. Real time PCR revealed the inhibition of collagen type I alpha 1 chain (Col1A1) and osteopontin (OPN) expression. These data indicated that the factors secreted by bone chips inhibited the osteogenic differentiation of MSCs. However, in late cultures, bone morphogenetic protein-2 (BMP-2) expression was stimulated, suggesting the possibility of a delayed, secondary osteogenic effect.","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"38 1","pages":"14-22"},"PeriodicalIF":3.2000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.22203/eCM.v038a02","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European cells & materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22203/eCM.v038a02","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Bone autografting remains the clinical model of choice for resolving problematic fractures. The precise mechanisms through which the autograft promotes bone healing are unknown. The present study examined the hypothesis that cells within the autograft secrete osteogenic factors promoting the differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Particles of human bone ("chips") were recovered at the time of joint replacement surgery and placed in culture. Then, conditioned media were added to cultures of human, adipose-derived MSCs under both basal and osteogenic conditions. Contrary to expectation, medium conditioned by bone chips reduced the expression of alkaline phosphatase and strongly inhibited mineral deposition by MSCs cultured in osteogenic medium. Real time PCR revealed the inhibition of collagen type I alpha 1 chain (Col1A1) and osteopontin (OPN) expression. These data indicated that the factors secreted by bone chips inhibited the osteogenic differentiation of MSCs. However, in late cultures, bone morphogenetic protein-2 (BMP-2) expression was stimulated, suggesting the possibility of a delayed, secondary osteogenic effect.
期刊介绍:
eCM provides an interdisciplinary forum for publication of preclinical research in the musculoskeletal field (Trauma, Maxillofacial (including dental), Spine and Orthopaedics).
The clinical relevance of the work must be briefly mentioned within the abstract, and in more detail in the paper. Poor abstracts which do not concisely cover the paper contents will not be sent for review. Incremental steps in research will not be entertained by eCM journal.Cross-disciplinary papers that go across our scope areas are welcomed.