Investigation of Impact Performance of STF Impragnated Composites

IF 0.6 4区 工程技术 Q4 MECHANICS Mechanika Pub Date : 2023-04-19 DOI:10.5755/j02.mech.31069
Murat Berkay Zeka, A. Aytaç
{"title":"Investigation of Impact Performance of STF Impragnated Composites","authors":"Murat Berkay Zeka, A. Aytaç","doi":"10.5755/j02.mech.31069","DOIUrl":null,"url":null,"abstract":"It is important to achieve high strength, high modulus of elasticity, good energy damping for lightweight armor materials. For this purpose, two or more similar or different materials are combined at the macro level. In this way, a new structure emerges that we call composite material. A composite is a new structure in which the good properties of the components in its structure become evident in the material. Research on the production and mechanical properties of composites that meet the needs of the developing technology continues. Military personnel, armored vehicles and many security elements are tested in the field with a lot of threats (such as mines, armor piercing ammunition, explosives etc.). Therefore, the armor used by security elements should be strengthened without compromising features such as lightness, cost and long-term use. This study covers the development of Kevlar's ballistic properties by impregnating Shear Thickening Fluid (STF). STF is composed of silica (AEROSIL 200) and polyethylene glycol (PEG 400). STF-impregnated Kevlar fibers have been subjected to impact testing at low and high speeds. Low-speed tests were carried out with a drop tower. High-speed tests were carried out according to NIJ 0101.06 Level II standards. The mass fraction of silica in the STF was determined as the research parameter. The change in the behavior of the materials with the change of silica ratio was investigated; Although improvements were observed in energy dissipation in low-speed impacts, it was noted that ballistic behavior improved up to a certain point, and then the improvement in behavior decreased.","PeriodicalId":54741,"journal":{"name":"Mechanika","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.mech.31069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is important to achieve high strength, high modulus of elasticity, good energy damping for lightweight armor materials. For this purpose, two or more similar or different materials are combined at the macro level. In this way, a new structure emerges that we call composite material. A composite is a new structure in which the good properties of the components in its structure become evident in the material. Research on the production and mechanical properties of composites that meet the needs of the developing technology continues. Military personnel, armored vehicles and many security elements are tested in the field with a lot of threats (such as mines, armor piercing ammunition, explosives etc.). Therefore, the armor used by security elements should be strengthened without compromising features such as lightness, cost and long-term use. This study covers the development of Kevlar's ballistic properties by impregnating Shear Thickening Fluid (STF). STF is composed of silica (AEROSIL 200) and polyethylene glycol (PEG 400). STF-impregnated Kevlar fibers have been subjected to impact testing at low and high speeds. Low-speed tests were carried out with a drop tower. High-speed tests were carried out according to NIJ 0101.06 Level II standards. The mass fraction of silica in the STF was determined as the research parameter. The change in the behavior of the materials with the change of silica ratio was investigated; Although improvements were observed in energy dissipation in low-speed impacts, it was noted that ballistic behavior improved up to a certain point, and then the improvement in behavior decreased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STF浸渍复合材料冲击性能研究
实现轻质装甲材料的高强度、高弹性模量和良好的能量阻尼是很重要的。为此,在宏观级别上组合两种或两种以上类似或不同的材料。通过这种方式,一种新的结构出现了,我们称之为复合材料。复合材料是一种新的结构,其中其结构中的组分的良好性能在材料中变得明显。对满足发展中技术需求的复合材料的生产和力学性能的研究仍在继续。军事人员、装甲车和许多安全元件都是在具有大量威胁(如地雷、穿甲弹药、爆炸物等)的现场进行测试的。因此,安全元件使用的装甲应在不影响重量轻、成本高和长期使用等特点的情况下进行加固。本研究涵盖了通过浸渍剪切增稠液(STF)来开发Kevlar的弹道性能。STF由二氧化硅(AEROSIL 200)和聚乙二醇(PEG 400)组成。STF浸渍的Kevlar纤维已经在低速和高速下进行了冲击测试。低速试验是用吊塔进行的。高速试验按照NIJ 0101.06二级标准进行。确定STF中二氧化硅的质量分数作为研究参数。研究了材料的行为随二氧化硅比例的变化;尽管在低速撞击中观察到能量耗散有所改善,但值得注意的是,弹道行为在一定程度上有所改善,然后行为的改善程度有所下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanika
Mechanika 物理-力学
CiteScore
1.30
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The journal is publishing scientific papers dealing with the following problems: Mechanics of Solid Bodies; Mechanics of Fluids and Gases; Dynamics of Mechanical Systems; Design and Optimization of Mechanical Systems; Mechanical Technologies.
期刊最新文献
Nonlinear vibration characteristics and bifurcation control of a class of piecewise constrained systems with dynamic clearances Model Updating Based on Bayesian Theory and Improved Objective Function Design and FEM Analysis of Plastic Parts of a Tie-Rod Composite Hydraulic Cylinder Real-Time Energy Consumption Sensing System in SMT Intelligent Workshop Research on Bionic Hierarchical Optimization of Wing Based on PLSR and PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1