Viktor Engström, Pontus Johnson, Robert Lagerström, Erik Ringdahl, Max Wällstedt
{"title":"Automated Security Assessments of Amazon Web Services Environments","authors":"Viktor Engström, Pontus Johnson, Robert Lagerström, Erik Ringdahl, Max Wällstedt","doi":"10.1145/3570903","DOIUrl":null,"url":null,"abstract":"Migrating enterprises and business capabilities to cloud platforms like Amazon Web Services (AWS) has become increasingly common. However, securing cloud operations, especially at large scales, can quickly become intractable. Customer-side issues such as service misconfigurations, data breaches, and insecure changes are prevalent. Furthermore, cloud-specific tactics and techniques paired with application vulnerabilities create a large and complex search space. Various solutions and modeling languages for cloud security assessments exist. However, no single one appeared sufficiently cloud-centered and holistic. Many also did not account for tactical security dimensions. This article, therefore, presents a domain-specific modeling language for AWS environments. When used to model AWS environments, manually or automatically, the language automatically constructs and traverses attack graphs to assess security. Assessments, therefore, require minimal security expertise from the user. The modeling language was primarily tested on four third-party AWS environments through securiCAD Vanguard, a commercial tool built around the AWS modeling language. The language was validated further by measuring performance on models provided by anonymous end users and a comparison with a similar open source assessment tool. As of March 2020, the modeling language could represent essential AWS structures, cloud tactics, and threats. However, the tests highlighted certain shortcomings. Data collection steps, such as planted credentials, and some missing tactics were obvious. Nevertheless, the issues covered by the DSL were already reminiscent of common issues with real-world precedents. Future additions to attacker tactics and addressing data collection should yield considerable improvements.","PeriodicalId":56050,"journal":{"name":"ACM Transactions on Privacy and Security","volume":"26 1","pages":"1 - 31"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Privacy and Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3570903","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Migrating enterprises and business capabilities to cloud platforms like Amazon Web Services (AWS) has become increasingly common. However, securing cloud operations, especially at large scales, can quickly become intractable. Customer-side issues such as service misconfigurations, data breaches, and insecure changes are prevalent. Furthermore, cloud-specific tactics and techniques paired with application vulnerabilities create a large and complex search space. Various solutions and modeling languages for cloud security assessments exist. However, no single one appeared sufficiently cloud-centered and holistic. Many also did not account for tactical security dimensions. This article, therefore, presents a domain-specific modeling language for AWS environments. When used to model AWS environments, manually or automatically, the language automatically constructs and traverses attack graphs to assess security. Assessments, therefore, require minimal security expertise from the user. The modeling language was primarily tested on four third-party AWS environments through securiCAD Vanguard, a commercial tool built around the AWS modeling language. The language was validated further by measuring performance on models provided by anonymous end users and a comparison with a similar open source assessment tool. As of March 2020, the modeling language could represent essential AWS structures, cloud tactics, and threats. However, the tests highlighted certain shortcomings. Data collection steps, such as planted credentials, and some missing tactics were obvious. Nevertheless, the issues covered by the DSL were already reminiscent of common issues with real-world precedents. Future additions to attacker tactics and addressing data collection should yield considerable improvements.
期刊介绍:
ACM Transactions on Privacy and Security (TOPS) (formerly known as TISSEC) publishes high-quality research results in the fields of information and system security and privacy. Studies addressing all aspects of these fields are welcomed, ranging from technologies, to systems and applications, to the crafting of policies.