Self-Propagating High-Temperature Synthesis and Consolidation of MoSi2–MoB Heterophase Ceramics Alloyed with ZrB2

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-09-05 DOI:10.3103/S106138622303007X
Yu. S. Pogozhev, A. Yu. Potanin, S. I. Rupasov, F. V. Kiryukhantsev-Korneev, E. A. Levashov
{"title":"Self-Propagating High-Temperature Synthesis and Consolidation of MoSi2–MoB Heterophase Ceramics Alloyed with ZrB2","authors":"Yu. S. Pogozhev,&nbsp;A. Yu. Potanin,&nbsp;S. I. Rupasov,&nbsp;F. V. Kiryukhantsev-Korneev,&nbsp;E. A. Levashov","doi":"10.3103/S106138622303007X","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate the self-propagating high-temperature synthesis (SHS) and consolidation of heterophase MoSi<sub>2</sub>–MoB ceramics alloyed with ZrB<sub>2</sub>. A thermodynamic analysis of the combustion temperature (<i>T</i><sub>ad</sub>) and the equilibrium composition of synthesis products was performed for the Zr–Mo–Si–B system. The effect of varying Zr and B concentrations on combustion kinetics was studied in detail. The resulting heterophase SHS powders showed high structural and chemical homogeneity, though were noticeably agglomerated. We identified optimal consolidation conditions and achieved compact ceramics with a phase composition identical to the original SHS powder. The ceramic structure consists of a matrix of MoSi<sub>2</sub> grains with interspersed needle-like ZrB<sub>2</sub> grains and polyhedral inclusions of MoB. This work establishes a basis for the preparation of MoSi<sub>2</sub>–MoB–ZrB<sub>2</sub> ceramics with excellent hardness, fracture toughness, thermal conductivity, and high-temperature oxidation resistance.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S106138622303007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the self-propagating high-temperature synthesis (SHS) and consolidation of heterophase MoSi2–MoB ceramics alloyed with ZrB2. A thermodynamic analysis of the combustion temperature (Tad) and the equilibrium composition of synthesis products was performed for the Zr–Mo–Si–B system. The effect of varying Zr and B concentrations on combustion kinetics was studied in detail. The resulting heterophase SHS powders showed high structural and chemical homogeneity, though were noticeably agglomerated. We identified optimal consolidation conditions and achieved compact ceramics with a phase composition identical to the original SHS powder. The ceramic structure consists of a matrix of MoSi2 grains with interspersed needle-like ZrB2 grains and polyhedral inclusions of MoB. This work establishes a basis for the preparation of MoSi2–MoB–ZrB2 ceramics with excellent hardness, fracture toughness, thermal conductivity, and high-temperature oxidation resistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZrB2合金MoSi2-MoB异相陶瓷自蔓延高温合成与固结
在本研究中,我们研究了ZrB2合金化MoSi2-MoB异相陶瓷的自蔓延高温合成(SHS)和固结。对Zr-Mo-Si-B体系的燃烧温度(Tad)和合成产物的平衡组成进行了热力学分析。研究了不同Zr和B浓度对燃烧动力学的影响。制备的异相SHS粉末具有较高的结构均匀性和化学均匀性,但存在明显的团聚现象。我们确定了最佳固结条件,并获得了相组成与原始SHS粉末相同的致密陶瓷。陶瓷结构由MoSi2晶粒基体、穿插针状ZrB2晶粒和多面体MoB夹杂物组成。本工作为制备具有优异硬度、断裂韧性、导热性和高温抗氧化性的mosi2 - mobo - zrb2陶瓷奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
期刊最新文献
Influence of Front Instability on the Combustion Initiation in Gas-Free Mixture by Local Hot Point The Effect of Impurity Gas on the Combustion Mode of Granular Mixtures Ti–C–B Features of Front Propagation during Combustion of a Thermite-Type Mixture FeO/TiO2/B2O3/Cr2O3/CaCrO4/Al/C under Gravity Forces High-Temperature Synthesis of Cast Ceramic Material Al2O3–Cr2O3 + ZrO2 Study of the Adsorption Properties of Mesoporous Silica Modified with Silver and Doped with Cerium or Terbium Using Inverse Gas Chromatography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1