M. S. Aswood, Mustafa S Almusawi, N. Mahdi, Ansam F. Showard
{"title":"EVALUATION OF COMMITTED EFFECTIVE DOSE OF RADON GAS IN DRINKING WATER IN AL-QADISIYAH PROVINCE, IRAQ","authors":"M. S. Aswood, Mustafa S Almusawi, N. Mahdi, Ansam F. Showard","doi":"10.52571/ptq.v17.n36.2020.306_periodico36_pgs_291_301.pdf","DOIUrl":null,"url":null,"abstract":"\nScientific research is giving interest in determining the concentrations of Radon in drinking water and sediments due to the occurrence of serious diseases related to this chemical element. The solubility of Radon in water (potable and underground) allows percolation in soils and rocks. The concentrations of Radon natural radioactivity were measured in drinking water and sediment at a wastewater treatment plant (Al-Diwaniyah, Iraq) using trace detector RAD7 and CR-39 (diffusion chamber, Landauer). Sampling was carried out at 20 samples (10 of drinking water and 10 of sediment). The results of radioactivity showed that the concentration of 222Rn in drinking water varies from 0.05 to 0.47 Bq/L, with an average of 0.24 Bq/L. However, the 222Rn concentrations in the sediment vary from 29.16 to 60.52 Bq/m3, with an average of 42.43 Bq/m3. From the results, it was possible to calculate the contribution of Radon to drinking water associated with age. The effective annual doses were found below the recommended limit. Radon concentrations in drinking water and sediment showed high levels of radioactivity compared to the natural limit. However, the same results indicated low radioactivity levels compared to the United Nations Scientific Committee on the Effects of Atomic Radiation and the World Health Organization. In this way, all drinking water at these stations is safe to use.\n","PeriodicalId":45103,"journal":{"name":"Periodico Tche Quimica","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodico Tche Quimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52571/ptq.v17.n36.2020.306_periodico36_pgs_291_301.pdf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Scientific research is giving interest in determining the concentrations of Radon in drinking water and sediments due to the occurrence of serious diseases related to this chemical element. The solubility of Radon in water (potable and underground) allows percolation in soils and rocks. The concentrations of Radon natural radioactivity were measured in drinking water and sediment at a wastewater treatment plant (Al-Diwaniyah, Iraq) using trace detector RAD7 and CR-39 (diffusion chamber, Landauer). Sampling was carried out at 20 samples (10 of drinking water and 10 of sediment). The results of radioactivity showed that the concentration of 222Rn in drinking water varies from 0.05 to 0.47 Bq/L, with an average of 0.24 Bq/L. However, the 222Rn concentrations in the sediment vary from 29.16 to 60.52 Bq/m3, with an average of 42.43 Bq/m3. From the results, it was possible to calculate the contribution of Radon to drinking water associated with age. The effective annual doses were found below the recommended limit. Radon concentrations in drinking water and sediment showed high levels of radioactivity compared to the natural limit. However, the same results indicated low radioactivity levels compared to the United Nations Scientific Committee on the Effects of Atomic Radiation and the World Health Organization. In this way, all drinking water at these stations is safe to use.
期刊介绍:
The Journal publishes original research papers, review articles, short communications (scientific publications), book reviews, forum articles, announcements or letters as well as interviews. Researchers from all countries are invited to publish on its pages.