Augmented Lagrangian–Based First-Order Methods for Convex-Constrained Programs with Weakly Convex Objective

Zichong Li, Yangyang Xu
{"title":"Augmented Lagrangian–Based First-Order Methods for Convex-Constrained Programs with Weakly Convex Objective","authors":"Zichong Li, Yangyang Xu","doi":"10.1287/ijoo.2021.0052","DOIUrl":null,"url":null,"abstract":"First-order methods (FOMs) have been widely used for solving large-scale problems. A majority of existing works focus on problems without constraint or with simple constraints. Several recent works have studied FOMs for problems with complicated functional constraints. In this paper, we design a novel augmented Lagrangian (AL)–based FOM for solving problems with nonconvex objective and convex constraint functions. The new method follows the framework of the proximal point (PP) method. On approximately solving PP subproblems, it mixes the usage of the inexact AL method (iALM) and the quadratic penalty method, whereas the latter is always fed with estimated multipliers by the iALM. The proposed method achieves the best-known complexity result to produce a near Karush–Kuhn–Tucker (KKT) point. Theoretically, the hybrid method has a lower iteration-complexity requirement than its counterpart that only uses iALM to solve PP subproblems; numerically, it can perform significantly better than a pure-penalty-based method. Numerical experiments are conducted on nonconvex linearly constrained quadratic programs. The numerical results demonstrate the efficiency of the proposed methods over existing ones.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2021.0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

First-order methods (FOMs) have been widely used for solving large-scale problems. A majority of existing works focus on problems without constraint or with simple constraints. Several recent works have studied FOMs for problems with complicated functional constraints. In this paper, we design a novel augmented Lagrangian (AL)–based FOM for solving problems with nonconvex objective and convex constraint functions. The new method follows the framework of the proximal point (PP) method. On approximately solving PP subproblems, it mixes the usage of the inexact AL method (iALM) and the quadratic penalty method, whereas the latter is always fed with estimated multipliers by the iALM. The proposed method achieves the best-known complexity result to produce a near Karush–Kuhn–Tucker (KKT) point. Theoretically, the hybrid method has a lower iteration-complexity requirement than its counterpart that only uses iALM to solve PP subproblems; numerically, it can perform significantly better than a pure-penalty-based method. Numerical experiments are conducted on nonconvex linearly constrained quadratic programs. The numerical results demonstrate the efficiency of the proposed methods over existing ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弱凸目标凸约束规划的一阶增广拉格朗日方法
一阶方法(FOM)已被广泛用于解决大规模问题。现有的大多数工作都集中在没有约束或有简单约束的问题上。最近的几项工作已经研究了具有复杂函数约束的问题的FOM。在本文中,我们设计了一种新的基于增广拉格朗日量(AL)的FOM,用于求解具有非凸目标和凸约束函数的问题。新方法遵循了近端点(PP)方法的框架。在近似求解PP子问题时,它混合了不精确AL方法(iALM)和二次惩罚方法的使用,而后者总是由iALM提供估计的乘数。所提出的方法获得了最著名的复杂度结果,产生了接近Karush–Kuhn–Tucker(KKT)点。从理论上讲,与只使用iALM求解PP子问题的同类方法相比,混合方法的迭代复杂度要求更低;在数值上,它可以比纯基于惩罚的方法表现得更好。在非凸线性约束二次规划上进行了数值实验。数值结果表明,与现有方法相比,所提出的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1