A Comparative Study for Weighted Rayleigh Distribution

Pub Date : 2021-06-21 DOI:10.13052/jrss0974-8024.14112
Sofi Mudasir Ahad, Sheikh Parvaiz Ahmad, Sheikh Aasimeh Rehman
{"title":"A Comparative Study for Weighted Rayleigh Distribution","authors":"Sofi Mudasir Ahad, Sheikh Parvaiz Ahmad, Sheikh Aasimeh Rehman","doi":"10.13052/jrss0974-8024.14112","DOIUrl":null,"url":null,"abstract":"In this paper, Bayesian and non-Bayesian methods are used for parameter estimation of weighted Rayleigh (WR) distribution. Posterior distributions are derived under the assumption of informative and non-informative priors. The Bayes estimators and associated risks are obtained under different symmetric and asymmetric loss functions. Results are compared on the basis of posterior risk and mean square error using simulated and real life data sets. The study depicts that in order to estimate the scale parameter of the weighted Rayleigh distribution use of entropy loss function under Gumbel type II prior can be preferred. Also, Bayesian method of estimation having least values of mean squared error gives better results as compared to maximum likelihood method of estimation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.14112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, Bayesian and non-Bayesian methods are used for parameter estimation of weighted Rayleigh (WR) distribution. Posterior distributions are derived under the assumption of informative and non-informative priors. The Bayes estimators and associated risks are obtained under different symmetric and asymmetric loss functions. Results are compared on the basis of posterior risk and mean square error using simulated and real life data sets. The study depicts that in order to estimate the scale parameter of the weighted Rayleigh distribution use of entropy loss function under Gumbel type II prior can be preferred. Also, Bayesian method of estimation having least values of mean squared error gives better results as compared to maximum likelihood method of estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
加权瑞利分布的比较研究
本文将贝叶斯和非贝叶斯方法用于加权瑞利分布的参数估计。后验分布是在信息先验和非信息先验的假设下导出的。在不同的对称和非对称损失函数下,得到了贝叶斯估计量和相关风险。使用模拟和现实生活数据集,在后验风险和均方误差的基础上对结果进行了比较。该研究表明,为了估计加权瑞利分布的尺度参数,在Gumbel II型先验下使用熵损失函数是优选的。此外,与最大似然估计方法相比,具有最小均方误差值的贝叶斯估计方法给出了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1