Microstructure and surface quality of SLM printed miniature helical gear in LSPwC

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Surface Engineering Pub Date : 2023-02-01 DOI:10.1080/02670844.2023.2207934
S. Pathak, Marek Böhm, J. Kaufman, J. Kopeček, S. Zulić, Ondřej Stránský, J. Brajer, L. Beránek, T. Mocek
{"title":"Microstructure and surface quality of SLM printed miniature helical gear in LSPwC","authors":"S. Pathak, Marek Böhm, J. Kaufman, J. Kopeček, S. Zulić, Ondřej Stránský, J. Brajer, L. Beránek, T. Mocek","doi":"10.1080/02670844.2023.2207934","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present work describes the influence of underwater laser shock peening without coating (LSPwC) on selective laser melting manufactured meso-size (outside diameter ≤ 10 mm) helical gears. Five experiments were conducted using energies in the 200 mJ up to 1 J, while the spot size and overlap were kept constant as 1 mm and 90 %, respectively. Responses were measured and compared in terms of surface residual stresses, surface roughness, and microstructure of LSPwC-treated samples. Results show the development of significant compressive residual stresses in the root of the LSPwC processed helical gear, where it changes the state from tensile +45 MPa to compressive −421 MPa. Surface roughness has shown improvement, while volumetric material peak confirms the reduction by over 50%. Microstructure study was performed at the surface and by cross-section using scanning electron microscopy and electron backscatter diffraction analysis. The grain refinement and change in misorientation were observed, confirming plastic deformation.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"229 - 237"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2207934","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The present work describes the influence of underwater laser shock peening without coating (LSPwC) on selective laser melting manufactured meso-size (outside diameter ≤ 10 mm) helical gears. Five experiments were conducted using energies in the 200 mJ up to 1 J, while the spot size and overlap were kept constant as 1 mm and 90 %, respectively. Responses were measured and compared in terms of surface residual stresses, surface roughness, and microstructure of LSPwC-treated samples. Results show the development of significant compressive residual stresses in the root of the LSPwC processed helical gear, where it changes the state from tensile +45 MPa to compressive −421 MPa. Surface roughness has shown improvement, while volumetric material peak confirms the reduction by over 50%. Microstructure study was performed at the surface and by cross-section using scanning electron microscopy and electron backscatter diffraction analysis. The grain refinement and change in misorientation were observed, confirming plastic deformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSPwC中SLM印刷微型斜齿轮的微观结构和表面质量
摘要本文研究了无涂层水下激光冲击强化(LSPwC)对选择性激光熔化制造的中尺寸(外径≤10 mm)斜齿轮的影响。在200mj ~ 1j的能量范围内进行了5次实验,光斑尺寸和重叠度分别保持在1mm和90%。对lspwc处理样品的表面残余应力、表面粗糙度和微观结构进行了测量和比较。结果表明,LSPwC加工斜齿轮根部存在明显的残余压应力,从拉伸+45 MPa转变为压缩- 421 MPa。表面粗糙度有所改善,而体积材料峰值证实减少了50%以上。利用扫描电镜和电子背散射衍射分析对表面和横截面进行了微观结构研究。观察到晶粒细化和取向偏差的变化,证实了塑性变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
期刊最新文献
Examination of the metallization behaviour of an ABS surface Performance of electrochemically deposited hydroxyapatite on textured 316L SS for applications in biomedicine Vanadium promoted ZnO films: effects on optical and photocatalytic properties Preparation and frictional characteristics of solid lubrication coating on CFRP surface Laser surface texturing of dies in strip drawing of DP600 steel sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1