S. Pathak, Marek Böhm, J. Kaufman, J. Kopeček, S. Zulić, Ondřej Stránský, J. Brajer, L. Beránek, T. Mocek
{"title":"Microstructure and surface quality of SLM printed miniature helical gear in LSPwC","authors":"S. Pathak, Marek Böhm, J. Kaufman, J. Kopeček, S. Zulić, Ondřej Stránský, J. Brajer, L. Beránek, T. Mocek","doi":"10.1080/02670844.2023.2207934","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present work describes the influence of underwater laser shock peening without coating (LSPwC) on selective laser melting manufactured meso-size (outside diameter ≤ 10 mm) helical gears. Five experiments were conducted using energies in the 200 mJ up to 1 J, while the spot size and overlap were kept constant as 1 mm and 90 %, respectively. Responses were measured and compared in terms of surface residual stresses, surface roughness, and microstructure of LSPwC-treated samples. Results show the development of significant compressive residual stresses in the root of the LSPwC processed helical gear, where it changes the state from tensile +45 MPa to compressive −421 MPa. Surface roughness has shown improvement, while volumetric material peak confirms the reduction by over 50%. Microstructure study was performed at the surface and by cross-section using scanning electron microscopy and electron backscatter diffraction analysis. The grain refinement and change in misorientation were observed, confirming plastic deformation.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"229 - 237"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2207934","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The present work describes the influence of underwater laser shock peening without coating (LSPwC) on selective laser melting manufactured meso-size (outside diameter ≤ 10 mm) helical gears. Five experiments were conducted using energies in the 200 mJ up to 1 J, while the spot size and overlap were kept constant as 1 mm and 90 %, respectively. Responses were measured and compared in terms of surface residual stresses, surface roughness, and microstructure of LSPwC-treated samples. Results show the development of significant compressive residual stresses in the root of the LSPwC processed helical gear, where it changes the state from tensile +45 MPa to compressive −421 MPa. Surface roughness has shown improvement, while volumetric material peak confirms the reduction by over 50%. Microstructure study was performed at the surface and by cross-section using scanning electron microscopy and electron backscatter diffraction analysis. The grain refinement and change in misorientation were observed, confirming plastic deformation.
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.