Ryan A. St Laurent, Paul Z. Goldstein, James S. Miller, A. Markee, Hermann S. Staude, A. Kawahara, Scott E. Miller, Robert K. Robbins
{"title":"Phylogenetic systematics, diversification, and biogeography of Cerurinae (Lepidoptera: Notodontidae) and a description of a new genus","authors":"Ryan A. St Laurent, Paul Z. Goldstein, James S. Miller, A. Markee, Hermann S. Staude, A. Kawahara, Scott E. Miller, Robert K. Robbins","doi":"10.1093/isd/ixad004","DOIUrl":null,"url":null,"abstract":"We present the first dated molecular phylogeny of the Cerurinae moths (Notodontidae), based on sequence data for 666 loci generated by anchored hybrid enrichment. Monophyly of Cerurinae is corroborated, which includes the following genera: Pararethona Janse, Pseudorethona Janse, Oreocerura Kiriakoff, stat. rev., Cerurella Kiriakoff, Notocerura Kiriakoff, Hampsonita Kiriakoff, Afrocerura Kiriakoff, Cerurina Kiriakoff, Neoharpyia Daniel, Furcula Lamarck, Neocerura Matsumura, Americerura St Laurent and Goldstein, gen. nov., Cerura Schrank, and Kamalia Koçak & Kemal. The type species of the Neotropical genus Tecmessa Burmeister, T. annulipes (Berg), which had been incorrectly assigned to Cerurinae, is recovered in Heterocampinae; and Americerura gen. nov. is proposed to receive 17 unambiguously cerurine species transferred from Tecmessa. Divergence time estimates recover a crown age of Notodontidae roughly coincident with the K-Pg boundary, and a late-Oligocene crown age for Cerurinae. An African origin is inferred for Cerurinae, followed by colonization of the Palearctic, the Americas, Indomalaya, and Australasia during the Miocene. At least three independent colonizations of the Americas are inferred, one in the mid-Miocene associated with ancestral Americerura gen. nov. and two in the Pliocene and Pleistocene within Furcula. We hypothesize that the global spread of Cerurinae was enabled by that of its primary caterpillar foodplants in the Salicaceae. State-dependent diversification analyses suggest that cerurines diversified most rapidly in temperate climates.","PeriodicalId":48498,"journal":{"name":"Insect Systematics and Diversity","volume":"7 1","pages":"1 - 25"},"PeriodicalIF":3.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Systematics and Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/isd/ixad004","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
We present the first dated molecular phylogeny of the Cerurinae moths (Notodontidae), based on sequence data for 666 loci generated by anchored hybrid enrichment. Monophyly of Cerurinae is corroborated, which includes the following genera: Pararethona Janse, Pseudorethona Janse, Oreocerura Kiriakoff, stat. rev., Cerurella Kiriakoff, Notocerura Kiriakoff, Hampsonita Kiriakoff, Afrocerura Kiriakoff, Cerurina Kiriakoff, Neoharpyia Daniel, Furcula Lamarck, Neocerura Matsumura, Americerura St Laurent and Goldstein, gen. nov., Cerura Schrank, and Kamalia Koçak & Kemal. The type species of the Neotropical genus Tecmessa Burmeister, T. annulipes (Berg), which had been incorrectly assigned to Cerurinae, is recovered in Heterocampinae; and Americerura gen. nov. is proposed to receive 17 unambiguously cerurine species transferred from Tecmessa. Divergence time estimates recover a crown age of Notodontidae roughly coincident with the K-Pg boundary, and a late-Oligocene crown age for Cerurinae. An African origin is inferred for Cerurinae, followed by colonization of the Palearctic, the Americas, Indomalaya, and Australasia during the Miocene. At least three independent colonizations of the Americas are inferred, one in the mid-Miocene associated with ancestral Americerura gen. nov. and two in the Pliocene and Pleistocene within Furcula. We hypothesize that the global spread of Cerurinae was enabled by that of its primary caterpillar foodplants in the Salicaceae. State-dependent diversification analyses suggest that cerurines diversified most rapidly in temperate climates.