Innovative Services for Electric Mobility Based on Virtual Sensors and Petri Nets

IF 15.3 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Ieee-Caa Journal of Automatica Sinica Pub Date : 2023-08-15 DOI:10.1109/JAS.2023.123699
Agostino Marcello Mangini;Michele Roccotelli
{"title":"Innovative Services for Electric Mobility Based on Virtual Sensors and Petri Nets","authors":"Agostino Marcello Mangini;Michele Roccotelli","doi":"10.1109/JAS.2023.123699","DOIUrl":null,"url":null,"abstract":"About 60% of emissions into the earth's atmosphere are produced by the transport sector, caused by exhaust gases from conventional internal combustion engines. An effective solution to this problem is electric mobility, which significantly reduces the rate of urban pollution. The use of electric vehicles (EVs) has to be encouraged and facilitated by new information and communication technology (ICT) tools. To help achieve this goal, this paper proposes innovative services for electric vehicle users aimed at improving travel and charging experience. The goal is to provide a smart service to allow drivers to find the most appropriate charging solutions during a trip based on information such as the vehicle's current position, battery type, state of charge, nearby charge point availability, and compatibility. In particular, the drivers are supported so that they can find and book the preferred charge option according to time availability and the final cost of the charge points (CPs). To this purpose, two virtual sensors (VSs) are designed, modeled and simulated in order to provide the users with an innovative service for smart CP searching and booking. In particular, the first VS is devoted to locate and find available CPs in a preferred area, whereas the second VS calculates the charging cost for the EV and supports the driver in the booking phase. A UML activity diagram describes VSs operations and cooperation, while a UML sequence diagram highlights data exchange between the VSs and other electromobility ecosystem actors (CP operator, EV manufacturer, etc.). Furthermore, two timed Petri Nets (TPNs) are designed to model the proposed VSs, functioning and interactions as discrete event systems. The Petri Nets are synchronized by a single larger TPN that is simulated in different use cases and scenarios to demonstrate the effectiveness of the proposed VSs.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"10 9","pages":"1845-1859"},"PeriodicalIF":15.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10219084/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

About 60% of emissions into the earth's atmosphere are produced by the transport sector, caused by exhaust gases from conventional internal combustion engines. An effective solution to this problem is electric mobility, which significantly reduces the rate of urban pollution. The use of electric vehicles (EVs) has to be encouraged and facilitated by new information and communication technology (ICT) tools. To help achieve this goal, this paper proposes innovative services for electric vehicle users aimed at improving travel and charging experience. The goal is to provide a smart service to allow drivers to find the most appropriate charging solutions during a trip based on information such as the vehicle's current position, battery type, state of charge, nearby charge point availability, and compatibility. In particular, the drivers are supported so that they can find and book the preferred charge option according to time availability and the final cost of the charge points (CPs). To this purpose, two virtual sensors (VSs) are designed, modeled and simulated in order to provide the users with an innovative service for smart CP searching and booking. In particular, the first VS is devoted to locate and find available CPs in a preferred area, whereas the second VS calculates the charging cost for the EV and supports the driver in the booking phase. A UML activity diagram describes VSs operations and cooperation, while a UML sequence diagram highlights data exchange between the VSs and other electromobility ecosystem actors (CP operator, EV manufacturer, etc.). Furthermore, two timed Petri Nets (TPNs) are designed to model the proposed VSs, functioning and interactions as discrete event systems. The Petri Nets are synchronized by a single larger TPN that is simulated in different use cases and scenarios to demonstrate the effectiveness of the proposed VSs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虚拟传感器和Petri网的电动交通创新服务
地球大气中约60%的排放物由运输部门产生,由传统内燃机的废气引起。这个问题的一个有效解决方案是电动出行,它大大降低了城市污染率。必须通过新的信息和通信技术工具来鼓励和促进电动汽车的使用。为了帮助实现这一目标,本文为电动汽车用户提出了旨在改善出行和充电体验的创新服务。目标是提供智能服务,让驾驶员在旅途中根据车辆的当前位置、电池类型、充电状态、附近充电点的可用性和兼容性等信息找到最合适的充电解决方案。特别是,支持驾驶员,以便他们可以根据可用时间和充电点(CP)的最终成本找到并预订首选充电选项。为此,设计、建模和模拟了两个虚拟传感器,为用户提供智能CP搜索和预订的创新服务。特别地,第一VS专门用于定位和查找优选区域中的可用CP,而第二VS计算电动汽车的充电成本并在预订阶段支持驾驶员。UML活动图描述了VS的操作和合作,而UML序列图强调了VS与其他电动汽车生态系统参与者(CP运营商、电动汽车制造商等)之间的数据交换。此外,还设计了两个定时Petri网(TPN),将所提出的VS、功能和交互建模为离散事件系统。Petri网由单个较大的TPN同步,该TPN在不同的用例和场景中进行模拟,以证明所提出的VS的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ieee-Caa Journal of Automatica Sinica
Ieee-Caa Journal of Automatica Sinica Engineering-Control and Systems Engineering
CiteScore
23.50
自引率
11.00%
发文量
880
期刊介绍: The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control. Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.
期刊最新文献
Inside front cover Inside back cover Back cover Front cover On Zero Dynamics and Controllable Cyber-Attacks in Cyber-Physical Systems and Dynamic Coding Schemes as Their Countermeasures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1