Green synthesis of strontium-doped tin dioxide (SrSnO2) nanoparticles using the Mahonia bealei leaf extract and evaluation of their anticancer and antimicrobial activities
{"title":"Green synthesis of strontium-doped tin dioxide (SrSnO2) nanoparticles using the Mahonia bealei leaf extract and evaluation of their anticancer and antimicrobial activities","authors":"A. Aloufi","doi":"10.1515/gps-2022-8116","DOIUrl":null,"url":null,"abstract":"Abstract In this study, a simple green method was employed to produce strontium (Sr)-doped-tin-dioxide (SnO2) nanoparticles (SrSnO2 NPs) using the Mahonia bealei leaf extract. The synthesized NPs were characterized with XRD, FE-SEM, FTIR, and PL spectroscopy measurements. SrSnO2 NPs were analysed for antimicrobial and anticancer activities. The XRD analysis revealed that the synthesized samples exhibited a tetragonal rutile crystal structure type of tin oxide. The EDX spectrum conforms to the chemical composition and elemental mapping of SrSnO2 NP synthesis. At 632 cm−1, the O–Sn–O band was observed and chemical bonding was confirmed using an FTIR spectrum. The PL spectrum identified surface defects and oxygen vacancies. The SrSnO2 NPs were tested against both Gram-positive and Gram-negative human pathogens. The synthesized nanoparticles exhibited effective antibacterial properties. The anticancer effects of SrSnO2 nanoparticles were also assessed against MCF-7 cells, and growth was decreased with increasing concentrations of the nanoparticles. Dual staining revealed high apoptosis in SrSnO2 NP-treated MCF-7 cells, proving its apoptotic potential. To conclude, we synthesized and characterized potential SrSnO2 nanoparticles using a green approach from the Mahonia bealei leaf extract. Further, green SrSnO2 nanoparticles showed significant antibacterial and anticancer properties against breast cancer cells (MCF-7) through apoptosis, which suggests a healthcare application for these nanoparticles. Graphical abstract An overview of the study presented in a schematic form.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2022-8116","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In this study, a simple green method was employed to produce strontium (Sr)-doped-tin-dioxide (SnO2) nanoparticles (SrSnO2 NPs) using the Mahonia bealei leaf extract. The synthesized NPs were characterized with XRD, FE-SEM, FTIR, and PL spectroscopy measurements. SrSnO2 NPs were analysed for antimicrobial and anticancer activities. The XRD analysis revealed that the synthesized samples exhibited a tetragonal rutile crystal structure type of tin oxide. The EDX spectrum conforms to the chemical composition and elemental mapping of SrSnO2 NP synthesis. At 632 cm−1, the O–Sn–O band was observed and chemical bonding was confirmed using an FTIR spectrum. The PL spectrum identified surface defects and oxygen vacancies. The SrSnO2 NPs were tested against both Gram-positive and Gram-negative human pathogens. The synthesized nanoparticles exhibited effective antibacterial properties. The anticancer effects of SrSnO2 nanoparticles were also assessed against MCF-7 cells, and growth was decreased with increasing concentrations of the nanoparticles. Dual staining revealed high apoptosis in SrSnO2 NP-treated MCF-7 cells, proving its apoptotic potential. To conclude, we synthesized and characterized potential SrSnO2 nanoparticles using a green approach from the Mahonia bealei leaf extract. Further, green SrSnO2 nanoparticles showed significant antibacterial and anticancer properties against breast cancer cells (MCF-7) through apoptosis, which suggests a healthcare application for these nanoparticles. Graphical abstract An overview of the study presented in a schematic form.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.