{"title":"Balancing Security and Privacy in Genomic Range Queries","authors":"Seoyeon Hwang, Ercan Ozturk, G. Tsudik","doi":"10.1145/3575796","DOIUrl":null,"url":null,"abstract":"Exciting recent advances in genome sequencing, coupled with greatly reduced storage and computation costs, make genomic testing increasingly accessible to individuals. Already today, one’s digitized DNA can be easily obtained from a sequencing lab and later used to conduct numerous tests by engaging with a testing facility. Due to the inherent sensitivity of genetic material and the often-proprietary nature of genomic tests, privacy is a natural and crucial issue. While genomic privacy received a great deal of attention within and outside the research community, genomic security has not been sufficiently studied. This is surprising since the usage of fake or altered genomes can have grave consequences, such as erroneous drug prescriptions and genetic test outcomes. Unfortunately, in the genomic domain, privacy and security (as often happens) are at odds with each other. In this article, we attempt to reconcile security with privacy in genomic testing by designing a novel technique for a secure and private genomic range query protocol between a genomic testing facility and an individual user. The proposed technique ensures authenticity and completeness of user-supplied genomic material while maintaining its privacy by releasing only the minimum thereof. To confirm its broad usability, we show how to apply the proposed technique to a previously proposed genomic private substring matching protocol. Experiments show that the proposed technique offers good performance and is quite practical. Furthermore, we generalize the genomic range query problem to sparse integer sets and discuss potential use cases.","PeriodicalId":56050,"journal":{"name":"ACM Transactions on Privacy and Security","volume":" ","pages":"1 - 28"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Privacy and Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3575796","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Exciting recent advances in genome sequencing, coupled with greatly reduced storage and computation costs, make genomic testing increasingly accessible to individuals. Already today, one’s digitized DNA can be easily obtained from a sequencing lab and later used to conduct numerous tests by engaging with a testing facility. Due to the inherent sensitivity of genetic material and the often-proprietary nature of genomic tests, privacy is a natural and crucial issue. While genomic privacy received a great deal of attention within and outside the research community, genomic security has not been sufficiently studied. This is surprising since the usage of fake or altered genomes can have grave consequences, such as erroneous drug prescriptions and genetic test outcomes. Unfortunately, in the genomic domain, privacy and security (as often happens) are at odds with each other. In this article, we attempt to reconcile security with privacy in genomic testing by designing a novel technique for a secure and private genomic range query protocol between a genomic testing facility and an individual user. The proposed technique ensures authenticity and completeness of user-supplied genomic material while maintaining its privacy by releasing only the minimum thereof. To confirm its broad usability, we show how to apply the proposed technique to a previously proposed genomic private substring matching protocol. Experiments show that the proposed technique offers good performance and is quite practical. Furthermore, we generalize the genomic range query problem to sparse integer sets and discuss potential use cases.
期刊介绍:
ACM Transactions on Privacy and Security (TOPS) (formerly known as TISSEC) publishes high-quality research results in the fields of information and system security and privacy. Studies addressing all aspects of these fields are welcomed, ranging from technologies, to systems and applications, to the crafting of policies.