Accurate Insect Orientation Extraction Based on Polarization Scattering Matrix Estimation

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2017-08-17 DOI:10.1109/LGRS.2017.2733719
C. Hu, R. Wang, C. Liu, T. Zhang, W. Li
{"title":"Accurate Insect Orientation Extraction Based on Polarization Scattering Matrix Estimation","authors":"C. Hu, R. Wang, C. Liu, T. Zhang, W. Li","doi":"10.1109/LGRS.2017.2733719","DOIUrl":null,"url":null,"abstract":"A novel insect orientation extraction method is proposed based on the target polarization scattering matrix (PSM) estimation, which is applicable for traditional vertical-looking insect radar with noncoherent reception as well as the coherent radar. The insect echo signal at different polarization directions on the radar polarization plane is usually acquired by means of rotating linearly polarized antenna. In this letter, the insect echo signal is first used to accurately estimate insect PSM by an iterative algorithm based on the second-order polynomial approximation. Meanwhile, the Cramer–Rao lower bound is also analyzed to test the estimation performance. Next, based on the assumption that the target orientation is consistent with the dominant eigenvector, the insect orientation is extracted from the estimated PSM. Finally, both theoretical simulations and real experimental data are used to validate the effectiveness and feasibility of our proposed method, which can achieve good orientation estimation accuracy at low signal-to-noise ratio.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"14 1","pages":"1755-1759"},"PeriodicalIF":4.0000,"publicationDate":"2017-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2733719","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2733719","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 21

Abstract

A novel insect orientation extraction method is proposed based on the target polarization scattering matrix (PSM) estimation, which is applicable for traditional vertical-looking insect radar with noncoherent reception as well as the coherent radar. The insect echo signal at different polarization directions on the radar polarization plane is usually acquired by means of rotating linearly polarized antenna. In this letter, the insect echo signal is first used to accurately estimate insect PSM by an iterative algorithm based on the second-order polynomial approximation. Meanwhile, the Cramer–Rao lower bound is also analyzed to test the estimation performance. Next, based on the assumption that the target orientation is consistent with the dominant eigenvector, the insect orientation is extracted from the estimated PSM. Finally, both theoretical simulations and real experimental data are used to validate the effectiveness and feasibility of our proposed method, which can achieve good orientation estimation accuracy at low signal-to-noise ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于偏振散射矩阵估计的昆虫定向精确提取
提出了一种基于目标偏振散射矩阵(PSM)估计的昆虫方位提取方法,该方法既适用于传统的非相干接收垂视昆虫雷达,也适用于相干雷达。雷达极化平面上不同偏振方向的昆虫回波信号通常采用旋转线极化天线获取。本文首先利用昆虫回波信号,采用基于二阶多项式近似的迭代算法对昆虫PSM进行精确估计。同时,对Cramer-Rao下界进行了分析,检验了估计的性能。其次,在假设目标方向与优势特征向量一致的前提下,从估计的PSM中提取昆虫方向。最后,通过理论仿真和实际实验数据验证了所提方法的有效性和可行性,在低信噪比的情况下获得了较好的定向估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1