{"title":"Petrophysical analysis and hydrocarbon potential of the Matulla Formation in the Muzhil Field, central part of the Gulf of Suez, Egypt","authors":"A. Mohamed, A. Omran, M. T. Mohamed, B. Nabawy","doi":"10.33271/mining17.02.121","DOIUrl":null,"url":null,"abstract":"Purpose. The research is aimed at evaluating the petrophysical characteristics of the Late Cretaceous Matulla Formation in the central part of the Gulf of Suez in order to detect its hydrocarbon reservoir potential. Methods. Well logs from five wells (Muzhil-1, -2, -4, -7, -8) were used to evaluate the Matulla reservoirs based on a computerized approach. Petrophysical parameters and fluid types were calculated, verified using core data, and represented vertically as lithosaturation cross plots and laterally as isoparametric variation maps.. Findings. Evaluation of total porosity (Φt), effective porosity (Φe), shale content (Vsh), water saturation (Sw), permeability (K), bulk volume of water (BVW), and net pay characteristics of Matulla Formation in the Muzhil wells showed the following weighted average values: 18-23%, 15-19%, 21-40%, 20-100%, 1.1-281 mD, 3-21% and 0-83 ft, respectively. The Log-derived lithology identification indicates that the major matrix component of the Matulla Formation is quartzose sandstone with minor shale and carbonate contents. The upper zone is a poor reservoir, while the middle and lower zones are considered good reservoirs in all studied wells. It is expected that Muzhil-2 will produce oil without water; however, Muzhil-1 and Muzhil-4 will produce oil with water; while Muzhil-7 and Muzhil-8 will produce water only. Originality. Detailed log-derived petrophysical evaluation, verified by core analysis and well tests (DST and MDT), construction of lithosaturation cross plots for each well and isoparametric petrophysical maps are performed for the first time for Matulla Formation in the Muzhil field. Practical implications. The obtained results on lithosaturation and petrophysics have expanded the knowledge about the characteristics of the Matulla Formation sediments, hosting promising reservoir intervals, and should be taken into account in future exploration and development of the Muzhil field.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining17.02.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose. The research is aimed at evaluating the petrophysical characteristics of the Late Cretaceous Matulla Formation in the central part of the Gulf of Suez in order to detect its hydrocarbon reservoir potential. Methods. Well logs from five wells (Muzhil-1, -2, -4, -7, -8) were used to evaluate the Matulla reservoirs based on a computerized approach. Petrophysical parameters and fluid types were calculated, verified using core data, and represented vertically as lithosaturation cross plots and laterally as isoparametric variation maps.. Findings. Evaluation of total porosity (Φt), effective porosity (Φe), shale content (Vsh), water saturation (Sw), permeability (K), bulk volume of water (BVW), and net pay characteristics of Matulla Formation in the Muzhil wells showed the following weighted average values: 18-23%, 15-19%, 21-40%, 20-100%, 1.1-281 mD, 3-21% and 0-83 ft, respectively. The Log-derived lithology identification indicates that the major matrix component of the Matulla Formation is quartzose sandstone with minor shale and carbonate contents. The upper zone is a poor reservoir, while the middle and lower zones are considered good reservoirs in all studied wells. It is expected that Muzhil-2 will produce oil without water; however, Muzhil-1 and Muzhil-4 will produce oil with water; while Muzhil-7 and Muzhil-8 will produce water only. Originality. Detailed log-derived petrophysical evaluation, verified by core analysis and well tests (DST and MDT), construction of lithosaturation cross plots for each well and isoparametric petrophysical maps are performed for the first time for Matulla Formation in the Muzhil field. Practical implications. The obtained results on lithosaturation and petrophysics have expanded the knowledge about the characteristics of the Matulla Formation sediments, hosting promising reservoir intervals, and should be taken into account in future exploration and development of the Muzhil field.